共检索到 4

The land areas and crop species adversely impacted by salinity and heavy metals are growing rapidly. Current research indicates that plant growth-promoting microorganisms offer an environmentally friendly option for improving physiological and biochemical processes in plants growing under stress conditions. The aim of the present study was to investigate the potential mitigation of simultaneous salinity and cadmium (Cd) stress in rapeseed ( Brassica campestris cv. BARI Sarisha-17) by the application of Azospirillum sp. (Az), phosphate solubilizing bacteria (PSB), potassium mobilizing bacteria (KMB), and vesicular arbuscular mycorrhiza (VAM). Seeds were treated with PSB or KMB prior to sowing, whereas Az, PSB, KMB, or VAM were added as supplements during soil preparation. At 21 days after sowing, the plants were treated with a combination of salt (100 mM NaCl) and Cd (0.25 mM CdCl2), with several applications at 7-day intervals. The combination of salt and Cd stress decreased plant growth and biomass, relative water content, and photosynthetic pigment levels, while also increased electrolyte leakage, lipid peroxidation, and the generation of excess reactive oxygen species (ROS). Salt and Cd stress also impaired plant ion balances of sodium, potassium and nitrate, antioxidant defenses, and glyoxalase system activity. Application of Az, PSB, or KMB restored these parameters to unstressed levels by facilitating the scavenging of ROS, maintaining water status, restoring ion balances, enhancing plant antioxidant defenses, and increasing glyoxalase enzyme activity, while reducing methylglyoxal toxicity and improving photosynthetic activity. The application of KMB was the most effective; however, all microbe supplementations showed the ability to alleviate the damage caused by stress in rapeseed. These findings highlight the ability of soil microorganisms with plant growth-promoting properties to improve the physiological and biochemical functions of rapeseed under Cd and salt stress.

期刊论文 2024-12-01 DOI: 10.1016/j.stress.2024.100605 ISSN: 2667-064X

Citrus is mainly cultivated in acid soil with low boron (B) and high copper (Cu). In this study, Citrus sinensis seedlings were submitted to 0.5 (control) or 350 mu M Cu (Cu excess or Cu exposure) and 2.5, 10, or 25 mu M B for 24 weeks. Thereafter, H2O2 production rate (HPR), superoxide production rate (SAPR), malondialdehyde, methylglyoxal, and reactive oxygen species (ROS) and methylglyoxal detoxification systems were measured in leaves and roots in order to test the hypothesis that B addition mitigated Cu excess-induced oxidative damage in leaves and roots by reducing the Cu excess-induced formation and accumulation of ROS and MG and by counteracting the impairments of Cu excess on ROS and methylglyoxal detoxification systems. Cu and B treatments displayed an interactive influence on ROS and methylglyoxal formation and their detoxification systems. Cu excess increased the HPR, SAPR, methylglyoxal level, and malondialdehyde level by 10.9% (54.3%), 38.9% (31.4%), 50.3% (24.9%), and 312.4% (585.4%), respectively, in leaves (roots) of 2.5 mu M B-treated seedlings, while it only increased the malondialdehyde level by 48.5% (97.8%) in leaves (roots) of 25 mu M B-treated seedlings. Additionally, B addition counteracted the impairments of Cu excess on antioxidant enzymes, ascorbate-glutathione cycle, sulfur metabolism-related enzymes, sulfur-containing compounds, and methylglyoxal detoxification system, thereby protecting the leaves and roots of Cu-exposed seedlings against oxidative damage via the coordinated actions of ROS and methylglyoxal removal systems. Our findings corroborated the hypothesis that B addition alleviated Cu excess-induced oxidative damage in leaves and roots by decreasing the Cu excess-induced formation and accumulation of ROS and MG and by lessening the impairments of Cu excess on their detoxification systems. Further analysis indicated that the pathways involved in the B-induced amelioration of oxidative stress caused by Cu excess differed between leaves and roots.

期刊论文 2024-03-01 DOI: 10.3390/antiox13030268

Nitrogen-deficiency (ND) usually occurs in some citrus orchard soils in China. The roles of reactive oxygen species (ROS) and methylglyoxal (MG) generation and their detoxification systems in ND tolerance of horticultural woody plants still need to be revealed. For the first time, we examined the effects of ND on ROS and MG generation and their detoxification systems in leaves and roots of Citrus sinensis seedlings. The objectives are to test the hypotheses that N-deficient leaves and roots can keep high abilities to scavenge ROS and MG, thereby protecting them from oxidative damage, and that ND-induced alterations of ROS and MG formation and their detoxification systems in leaves and roots are different. ND augmented superoxide anion production rate and MG concentrations, but it decreased malondialdehyde (MDA) concentrations and electrolyte leakage in leaves and roots. ND increased the activities of most enzymes involved in ROS (ascorbate-glutathione cycle-related enzymes, antioxidant enzymes, and sulfur metabolism-related enzymes) and MG (glyoxalases) detoxification expressed on a protein basis with a few exceptions, and the concentrations of ascorbate, phytochelatins, and total non-protein thiols in leaves and roots. These results suggested that nitrogen-deficient leaves and roots could keep high abilities to detoxify ROS and MG, and protect them from oxidative damage. Generally viewed, ND affected the production and removal of ROS and MG more in roots than in leaves.

期刊论文 2024-02-01 DOI: 10.1016/j.scienta.2023.112709 ISSN: 0304-4238

Biochar (BC) and humic acid (HA) are well-documented in metal/metalloid detoxification, but their regulatory role in conferring plant oxidative stress under arsenic (As) stress is poorly understood. Therefore, we aimed at investigating the role of BC and HA (0.2 and 0.4 g kg(-1) soil) in the detoxification of As (0.25 mM sodium arsenate) toxicity in rice (Oryza sativa L. cv. BRRI dhan75). Arsenic exhibited an increased lipid peroxidation, hydrogen peroxide, electrolyte leakage, and proline content which were 32, 30, 9, and 89% higher compared to control. In addition, the antioxidant defense system of rice consisting of non-enzyme antioxidants (18 and 43% decrease in ascorbate and glutathione content) and enzyme activities (23-50% reduction over control) was decreased as a result of As toxicity. The damaging effect of As was prominent in plant height, biomass acquisition, tiller number, and relative water content. Furthermore, chlorophyll and leaf area also exhibited a decreasing trend due to toxicity. Arsenic exposure also disrupted the glyoxalase system (23 and 33% decrease in glyoxalase I and glyoxalase II activities). However, the application of BC and HA recovered the reactive oxygen species-induced damages in plants, upregulated the effectiveness of the ascorbate-glutathione pool, and accelerated the activities of antioxidant defense and glyoxalase enzymes. These positive roles of BC and HA ultimately resulted in improved plant characteristics with better plant-water status and regulated proline content that conferred As stress tolerance in rice. So, it can be concluded that BC and HA effectively mitigated As-induced physiology and oxidative damage in rice plants. Therefore, BC and HA could be used as potential soil amendments in As-contaminated rice fields.

期刊论文 2024-01-01 DOI: 10.1007/s11356-023-31119-x ISSN: 0944-1344
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页