共检索到 2

Naturally-ignited wildfires are increasing in frequency and severity in northern regions, contributing to rapid permafrost thaw-induced landscape change driven by climate warming. Low-severity wildfires typically result in minor organic matter loss. The impacts of such fires on the hydrological and geochemical dynamics of peat plateau-wetland complexes have not been examined. In 2014, a low-severity wildfire, with minimal ground surface damage, burned approximately one-half of a 5 ha permafrost plateau in the wetland-dominated landscape of the Scotty Creek watershed, Northwest Territories, Canada, in the discontinuous permafrost zone. In March 2016, hydrometeorological and permafrost conditions on the burned and unaffected plateaus were monitored including snowpack characteristics and surface energy dynamics. Pore water samples were collected from the saturated layer as thaw progressed throughout the growing season on the burned and unaffected plateaus. Repeated probing of the frost table depth was coupled with laboratory analyses of peat physical and hydraulic characteristics performed on peat cores collected from the top 20 cm of the ground surface in the burned and unaffected plots. The higher transmissivity of the burned forest canopy accelerated snowmelt promoting earlier onset of the thawing season and increased the ground heat flux to melt ground ice. Wildfire increased the thickness of the supra-permafrost layer, including the active layer and talik, resulting in a more uniform subsurface with limited depressional storage capacity and reduced preferential runoff flowpaths across the burned plateau. The incorporation of ash and char into the peat matrix reduced pore diameters, promoting greater subsurface soil moisture retention and longer pore water residence times ultimately providing greater opportunity for soil water interaction and biogeochemical reactions. Consequently, pore water showed elevated dissolved solutes, dissolved organic matter and mercury concentrations in the burned site. Low-severity wildfires have the potential to trigger a series of complex, inter-related hydrological, thermal and biogeochemical processes and feedbacks. (C) 2021 Elsevier B.V. All rights reserved.

2021-08-15 Web of Science

The frost table depth is a critical state variable for hydrological modelling in cold regions as frozen ground controls runoff generation, subsurface water storage and the permafrost regime. Calculation of the frost table depth is typically performed using a modified version of the Stefan equation, which is driven with the ground surface temperature. Ground surface temperatures have usually been estimated as linear functions of air temperature, referred to as n-factors' in permafrost studies. However, these linear functions perform poorly early in the thaw season and vary widely with slope, aspect and vegetation cover, requiring site-specific calibration. In order to improve estimation of the ground surface temperature and avoid site-specific calibration, an empirical radiative-conductive-convective (RCC) approach is proposed that uses air temperature, net radiation and antecedent frost table position as driving variables. The RCC algorithm was developed from forested and open sites on the eastern slope of the Coastal Mountains in southern Yukon, Canada, and tested at a high-altitude site in the Canadian Rockies, and a peatland in the southern Northwest Territories. The RCC approach performed well in a variety of land types without any local calibration and particularly improved estimation of ground temperature compared with linear functions during the first month of the thaw season, with mean absolute errors <2 degrees C in seven of the nine sites tested. An example of the RCC approach coupled with a modified Stefan thaw equation suggests a capability to represent frozen ground conditions that can be incorporated into hydrological and permafrost models of cold regions. Copyright (c) 2015 John Wiley & Sons, Ltd.

2015-08-30 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页