Tobacco is a significant economic crop cultivated in various regions of China. Arbuscular mycorrhizal fungi (AMF) can establish a symbiotic relationship with tobacco and regulate its growth. However, the influences of indigenous AMF on the growth and development of tobacco and their symbiotic mechanisms remain unclear. In this study, a pot inoculation experiment was conducted, revealing that six inoculants - Acaulospora bireticulata(Ab), Septoglomus viscosum(Sv), Funneliformis mosseae(Fm), Claroideoglomus etunicatum(Ce), Rhizophagus intraradices(Ri), and the mixed inoculant (H) - all formed stable symbiotic relationships with tobacco. These inoculants were found to enhance the activities of SOD, POD, PPO, and PAL in tobacco leaves, increase chlorophyll content, IAA content, CTK content, soluble sugars, and proline levels while reducing malondialdehyde content. Notably, among these inoculants, Fm exhibited significantly higher mycorrhizal infection density, arbuscular abundance, and soil spore density in the root systems of tobacco plants compared to other treatments. Membership function analysis confirmed that Fm had the most pronounced growth-promoting effect on tobacco. The transcriptome analysis results of different treatments of CK and inoculation with Fm revealed that 3,903 genes were upregulated and 4,196 genes were downregulated in the roots and stems of tobacco. Enrichment analysis indicated that the majority of these genes were annotated in related pathways such as biological processes, molecular functions, and metabolism. Furthermore, differentially expressed genes associated with auxin, cytokinin, antioxidant enzymes, and carotenoids were significantly enriched in their respective pathways, potentially indirectly influencing the regulation of tobacco plant growth. This study provides a theoretical foundation for the development and application of AMF inoculants to enhance tobacco growth.
Silicon nanoparticles (SiNPs) have emerged as multifunctional tools in sustainable agriculture, demonstrating significant efficacy in promoting crop growth and enhancing plant resilience against diverse biotic and abiotic stresses. Although their ability to strengthen antioxidant defense systems and activate systemic immune responses is well documented, the fundamental mechanisms driving these benefits remain unclear. This review synthesizes emerging evidence to propose an innovative paradigm: SiNPs remodel plant redox signaling networks and stress adaptation mechanisms by forming protein coronas through apoplastic protein adsorption. We hypothesize that extracellular SiNPs may elevate apoplastic reactive oxygen species (ROS) levels by adsorbing and inhibiting antioxidant enzymes, thereby enhancing intracellular redox buffering capacity and activating salicylic acid (SA)-dependent defense pathways. Conversely, smaller SiNPs infiltrating symplastic compartments risk oxidative damage due to direct suppression of cytoplasmic antioxidant systems. Additionally, SiNPs may indirectly influence heavy metal transporter activity through redox state regulation and broadly modulate plant physiological functions via transcription factor regulatory networks. Critical knowledge gaps persist regarding the dynamic composition of protein coronas under varying environmental conditions and their transgenerational impacts. By integrating existing mechanisms of SiNPs, this review provides insights and potential strategies for developing novel agrochemicals and stress-resistant crops.
The expected rise in world population and variability of climate change cause biotic and abiotic stress conditions that add uncertainty and complexity to food security and agro-industries. Plants are physiologically, biochemically, and molecularly affected when exposed to stressful conditions. Endophytic microbes that inhabit internal plant tissues without causing tissue damage or disease symptoms play a prominent role in the growth and development of host plants under both normal and abnormal conditions. In the current study, a pot experiment was conducted to verify that the same bacteria with multiple plant growth-promoting traits and osmotolerance were inoculated onto surface-sterilized maize seeds sown in sterile soil, re-isolated from these seedlings, and tested for their endophytic colonization to fulfill Koch's postulate, proving their endophytic competence and persistence. The bacterial isolates were found to colonize plants at levels ranging from 4.30 to 5.26 Log10 CFU g-1, and the maximum colonization of inoculated isolates was observed in roots, followed by stems, and least in leaves. The re-isolated bacteria were compared with inoculated isolates in terms of their carbon source utilization, antibiotic sensitivity, and 16S rRNA gene sequences, thus determining which endophytic bacteria had the ability to colonize and persist at high levels in plant hosts by experimentally inoculating plants.
Biosurfactants are one of the recently investigated biomolecules that have enormous applications in many fields including agriculture. As there is a need to develop less toxic, and environmentally friendly surfactants, therefore, amino acid-based biosurfactants that are produced from renewable raw materials are of great demand nowadays and can be used as an alternative to conventional chemical surfactants. The negative effects of chemical surfactants present in agrochemicals and modern detergents can damage human health and the environment, thus there is a crucial requirement to explore innovative, well planned, as well as cost-effective natural products for the welfare of humanity. Biodegradable surfactants created through green chemistry, specifically amino acid-based surfactants, are a favourable alternative to avoid these risks. Since amino acids (AAs) are inexhaustible compounds, therefore biosurfactants based on AAs have abundant potential as eco-friendly and environmentally friendly substances. Their higher biodegradation ability, low or even no toxicity, temperature stability, and tolerance to pH fluctuations make these biosurfactants preferable over chemical surfactants. In modern agriculture, most chemical pesticides and fertilizers used are frequently associated with numerous environmental issues. Hence, the development of green molecules as biosurfactants has a promising role in this regard to ensure agricultural sustainability. Biosurfactants can be harnessed for plant pathogen management, plant growth elevation, improving the quality of agricultural soil by soil remediation, degradation of complex hydrocarbons, increasing bioavailability of nutrients for advantageous plant-microbe interactions, and improving plant immunity, hence, they can supersede the grim synthetic surfactants which are presently being used.
Regenerative agriculture and the use of bioinputs have been gaining prominence in the global agribusiness sector, driven by the growing demand for healthier foods produced with minimal impact on ecosystems. In this context, compost and its derivatives (compost extracts and teas) are used to provide effective microorganisms to crops, although production processes affect the efficiency of compost extracts, as well as the soil microbiota. Thus, the hypothesis raised was that the organic matter source used for compost formation affects the agronomic efficiency of compost extracts. The objective of this study was to evaluate the effect of compost extracts based on litterfall of angiosperm (AC) and gymnosperm (GC) species, and the use of inoculation with the nitrogen-fixing bacteria Bradyrhizobium japonicum and Azospirillum brasilense (Bra+Azo), on soil quality, crop growth, grain yield, and disease control in soybean (Glycine max L.) crops. Using AC and GC resulted in varying effects on soybean growth and soil microbial biomass carbon (SMBC), confirming the hypothesis that the organic matter source affects the agronomic efficiency of compost extracts. Plants inoculated with Bra+Azo exhibited higher chlorophyll contents, resulting in a higher photochemical yield than for those treated with compost extracts (AC and GC). However, plants inoculated with AC and GC exhibited high plasticity in mitigating photochemical stress, reaching similar photosynthetic and transpiration rates to those observed in plants inoculated with Bra+Azo. Additionally, inoculation with Bra+Azo, overall, improved the photosynthetic efficiency of soybean plants, and the compost extracts (AC and GC) were more effective than the inoculation with Bra+Azo in increasing soybean 1000-grain weight, probably due to improvements in root development. The growth promotion observed with AC and GC is likely attributed to increases in SMBC by these compounds, denoting improvements in soil quality and biocontrol of damage caused by insect attacks.
Aims This study aimed to assess the effects of phenolic acid-degrading bacteria strains on phenolic acid content, plant growth, and soil bacterial community in phenolic acid-treated soils.Methods and results The strain of interest coded as B55 was isolated from cucumber root litter, and its degradation rates of ferulic acid and p-coumaric acid were 81.92% and 72.41% in Luria-Bertani solution, respectively, and B55 was identified as Bacillus subtilis. B55 had plant growth-promoting attributes, including solubilization of inorganic phosphate and production of siderophore and indole acetic acid. Both ferulic acid and p-coumaric acid significantly restrained an increase in cucumber seedling dry biomass, while the B55 inoculation not only completely counteracted the damage of phenolic acids to cucumber seedlings and decreased the content of ferulic acid and p-coumaric acid in soil, but also promoted cucumber seedlings growth. Amplicon sequencing found that B55 inoculation changed the cucumber rhizosphere bacterial community structure and promoted the enrichment of certain bacteria, such as Pseudomonas, Arthrobacter, Bacillus, Flavobacterium, Streptomyces, and Comamonas.Conclusions B55 not only promoted cucumber seedling growth, and decreased the content of ferulic acid and p-coumaric acid in soil, but it also increased the relative abundance of beneficial microorganisms in the cucumber rhizosphere.
The increasing global population has raised concerns about meeting growing food demand. Consequently, the agricultural sector relies heavily on chemical fertilizers to enhance crop production. However, the extensive use of chemical fertilizers can disrupt the natural balance of the soil, causing structural damage and changes in the soil microbiota, as well as affecting crop yield and quality. Biofertilizers and biostimulants derived from microalgae and cyanobacteria are promising sustainable alternatives that significantly influence plant growth and soil health owing to the production of diverse biomolecules, such as N-fixing enzymes, phytohormones, polysaccharides, and soluble amino acids. Despite these benefits, naturally producing high-quality microalgal biomass is challenging owing to various environmental factors. Controlled settings, such as artificial lighting and photobioreactors, allow continuous biomass production, but high capital and energy costs impede large-scale production of microalgal biomass. Sustainable methods, such as wastewater bioremediation and biorefinery strategies, are potential opportunities to overcome these challenges. This review comprehensively summarizes the plant growth-promoting activities of microalgae and elucidates the mechanisms by which various microalgal metabolites serve as biostimulants and their effects on plants, using distinct application methods. Furthermore, it addresses the challenges of biomass production in wastewater and explores biorefinery strategies for enhancing the sustainability of biofertilizers.
Since the late nineteenth century, the agricultural sector has experienced a tremendous increase in chemical use in response to the growing population. Consequently, the intensive and indiscriminate use of these substances caused serious damage on several levels, including threatening human health, disrupting soil microbiota, affecting wildlife ecosystems, and causing groundwater pollution. As a solution, the application of microbial-based products presents an interesting and ecological restoration tool. The use of Plant Growth-Promoting Microbes (PGPM) affected positive production, by increasing its efficiency, reducing production costs, environmental pollution, and chemical use. Among these microbial communities, lactic acid bacteria (LAB) are considered an interesting candidate to be formulated and applied as effective microbes. Indeed, these bacteria are approved by the European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) as Qualified Presumption of Safety statute and Generally Recognized as Safe for various applications. To do so, this review comes as a road map for future research, which addresses the different steps included in LAB formulation as biocontrol, bioremediation, or plant growth promoting agents from the isolation process to their field application passing by the different identification methods and their various uses. The plant application methods as well as challenges limiting their use in agriculture are also discussed.Graphical AbstractThe different processes involved in LAB use as biofertilizers or biocontrol agents.
Chemical pesticides and fertilizers are used in agricultural production worldwide to prevent damage from plant pathogenic microorganisms, insects, and nematodes, to minimize crop losses and to preserve crop quality. However, the use of chemical pesticides and fertilizers can severely pollute soil, water, and air, posing risks to the environment and human health. Consequently, developing new, alternative, environment-friendly microbial soil treatment interventions for plant protection and crop yield increase has become indispensable. Members of the filamentous fungal genus Trichoderma (Ascomycota, Sordariomycetes, Hypocreales) have long been known as efficient antagonists of plant pathogenic microorganisms based on various beneficial traits and abilities of these fungi. This minireview aims to discuss the advances in the field of Trichoderma-containing multicomponent microbiological inoculants based on recent experimental updates. Trichoderma strains can be combined with each other, with other fungi and/or with beneficial bacteria. The development and field performance of such inoculants will be addressed, focusing on the complementarity, synergy, and compatibility of their microbial components.
Soil salinity is one of the major environmental stresses that results in reduction of cultivable land and decreased productivity. In the present study, halotolerant and plant growth-promoting endophytic fungi were isolated from Catharanthus roseus, and their effect in mitigating salt stress in Vigna radiata was evaluated. An isolate CR7, identified to be Aspergillus terreus, showing plant growth promotion activities, viz. IAA production (23.43 +/- 0.79 mu g/ml), phosphate solubilization (133.63 +/- 6.40 mu g/ml), ACC deaminase activity (86.36 +/- 2.70 mu mol alpha-ketobutyrate/h/mg protein) etc. and ability to grow at 15% NaCl was selected for further in vivo studies. Colonization of CR7 was carried out in V. radiata which was subjected to different concentrations of salt (150, 200, and 250 mM NaCl). Under salt stress, A. terreus CR7 inoculated plants showed substantially improved root and shoot length, biomass, chlorophyll content, relative water content, phenolics, protein content, and DPPH scavenging activity. Endogenous IAA level was enhanced by 5.28-fold in treated plants at maximum salt stress. Inoculation of A. terreus CR7 affected oxidative stress parameters, exhibiting an increase in catalase and superoxide dismutase and reduction in proline, electrolyte leakage, and malondialdehyde content. Fluorescent microscopic analysis of roots revealed improved cell viability and decreased levels of glutathione and hydrogen peroxide under salt stress in treated plants. The isolate A. terreus CR7 also protected against DNA damage induced by salt stress which was evaluated using comet assay. A decrease in DNA tail length, tail moment, and olive tail moment to the extent of 19.87%, 19.76%, and 24.81%, respectively, was observed in A. terreus CR7-colonized plants under salt stress. It can be concluded that A. terreus CR7 can be exploited for alleviating the impact of salt stress in crop plants.