共检索到 2

The growth of different grafted guava was different as affected by grafting on different rootstock varieties, which also influenced the damage degree of Spodoptera litura larvae. The co-regulation of the pest gut by rhizosphere microorganisms and root exudates may contribute to this differential damage. In this study, the microorganisms of soil, plants, S. litura larvae and root exudates of guava grafted on different rootstock varieties were analysed and compared. The activities of superoxide dismutase, peroxidase and catalase in the midgut of S. litura larvae feeding on heterograft leaves of guava (where rootstock and scion are of the different variety) were significantly higher than those in the midgut of S. litura larvae feeding on homograft leaves of guava (where rootstock and scion are of the same variety), and glutathione s-transferase activity showed an opposite result. Enterococcus spp. and Escherichia spp. were the two bacterial genera with the greatest difference in abundance in the midgut of S. litura larvae and exhibited a negative correlation with each other. The root system of guava influenced the root structure, soil nutrients and the population structure and diversity of rhizosphere microorganisms by regulating the type and amount of root exudates. Root exudates also influenced the physiological and biochemical status of S. litura larvae by regulating the rhizosphere microorganisms driving the tritrophic interaction of plant-microbes-insects. Based on our results and the observed differences in pest occurrence among different grafted plants, improving varieties through grafting may become an effective strategy to reduce the impact of insect pests on guava.

期刊论文 2025-05-07 DOI: 10.1111/pbi.70109 ISSN: 1467-7644

Di(2-ethylhexyl) phthalate (DEHP) is perceived an emerging threat to terrestrial ecosystem, however, clear and accurate studies to fully understander ecotoxicity and underlying mechanisms of DEHP on the soil fauna remain poorly understood. Therefore, this study conducted a microcosm experiment of two earthworm ecotypes to investigate the ecological hazards of DHEP from multiple perspectives. The results showed that DEHP significantly increased the 8-hydroxy-deoxyguanosine (8-OHdG) content both in Eisenia foetida (13.76-133.0%) and Metaphire guillelmi (11.01-49.12%), leading to intracellular DNA damage. Meanwhile, DEHP negatively affected the expression of functional genes (ATP-6, NADH1, COX), which may be detrimental to mitochondrial respiration and oxidative stress at the gene level. The two earthworm guts shared analogous dominant bacteria however, the incorporation of DEHP drastically suppressed the homogeneity and diversity of the gut microbes, which further disrupted the homeostasis of the gut microbial ecological network. The keystone species in the gut of E. foetida decreased under DEHP stress but increased in the gut of M. guillelmi. Moreover, DEHP presented detrimental effects on soil enzyme activity, which is mainly associated with pollutant levels and earthworm activity. Collectively, the findings expand the understanding of soil ecological health and reveal the underlying mechanisms of the potential exposure risk to DEHP.

期刊论文 2024-04-05 DOI: 10.1016/j.jhazmat.2024.133700 ISSN: 0304-3894
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页