共检索到 6

The HKT protein family plays a vital role in plant responses to salt stress by mediating sodium (Na+) and potassium (K+) transport and maintaining Na+-K+ balance. Ipomoea pes-caprae (IPC), a pantropical creeping plant distributed along coastal regions in tropical and subtropical zones, exhibits exceptional salt tolerance. Understanding its salt tolerance mechanisms provides valuable insights for developing salt-tolerant crops and identifying candidate genes for genetic engineering. In this study, we identified two HKT genes, IpcHKT1;1 and IpcHKT1;2, in IPC. Phylogenetic analysis with HKT genes from other Ipomoea species revealed that all analyzed species contain two HKT genes located adjacently on the same chromosome. Comparative analysis of conserved motifs and intron-exon structures indicated that, despite their close evolutionary relationship, the HKT genes in IPC may exhibit functional divergence. Promoter analysis showed that their regulatory regions are enriched with cis-elements associated with responses to biotic and abiotic stresses, hormonal signaling, and growth, highlighting functional diversity within the HKT family. Subcellular localization experiments demonstrated that IpcHKT1;1 and IpcHKT1;2 are ion transporters localized to the plasma membrane. Heterologous expression in yeast confirmed their role in Na+/K+ symporter. Furthermore, RT-qPCR analysis revealed distinct expression patterns under salt stress: IpcHKT1;2 was significantly upregulated in roots, while IpcHKT1;1 expression was transitionally downregulated at 400 mM NaCl treatment. Prolonged high expression of IpcHKT1;2 in roots suggests its critical role in sustained salt stress tolerance. These findings provide new insights into the molecular mechanisms of salt tolerance in IPC. The identification of IpcHKT1;1 and IpcHKT1;2 as key players in salt stress responses offers promising genetic resources for enhancing crop resilience to soil salinity, addressing challenges associated with global salinization.

期刊论文 2025-04-01 DOI: 10.3389/fpls.2025.1538669 ISSN: 1664-462X

Globally, salt stress is one of the most significant abiotic stresses limiting crop production in dry-land regions. Nowadays, growing crops in dry-land regions under saline irrigation is the main focus. Soil amendment with organic materials has shown the potential to mitigate the adverse effects of salinity on plants. This study aimed to examine the ameliorative impact of soil amendment (manure + sandy, compost + sandy, clay + sandy and sandy soil) on the growth, yield, physiological, and biochemical attributes of Hedysarum scoparium Fisch. et Mey (HS) and Avena sativa L. (OT) under fresh and saline water irrigation in dry-land regions. The results showed that salt stress negatively affected both plant species' growth, physiological traits, yield, and chloride ions. In response to saline irrigation, plants of both species increased catalase (CAT) and ascorbate peroxidase (APX) activities as part of a self-defense mechanism to minimize damage. Salt stress also significantly raised levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), and chloride ions (Cl). However, soil amendment treatments like manure + sandy and compost + sandy soil countered the negative effects of saline irrigation, significantly improving plant growth and yield compared with sandy soil. Thus, organic soil amendment is a promising strategy for sustainable crop production under saline irrigation in dry-land regions. This study provides valuable insights into enhancing agricultural production by fostering resilient halophytes and salt-tolerant plant species in challenging environments.

期刊论文 2025-03-09 DOI: 10.3390/plants14060855 ISSN: 2223-7747

There is still a need to investigate the relationships between glycophytes and halophytes and the many biotic and abiotic factors in their natural environments. Therefore, we study the effects of the type of environment on the ecophysiological responses and condition of the glycophyte Elder Sambucus nigra L., the macrophyte Common Reed Phragmites australis (Cav.) Trin. ex Steud., the facultative halophyte Weeping Alkaligrass Puccinellia distans (Jacq.) Parl, and the obligate halophyte Common Glasswort Salicornia europaea L. in a saline-disturbed anthropogenic region of central Poland. We analyzed the effects of salinity, acidity, and soil organic matter on shoot length, lipoperoxidation, and proline in roots and green parts, and evaluated plant responses to environmental disturbance, which allowed for the comparison of adaptation strategies. The studies were carried out in (1) sodium production (near sodium factories), (2) anthropogenic environments (waste dumps, agroecosystems, calcium deposits, post-production tanks), (3) wetland environments (near river channels and riparian areas), and (4) control (natural, unpolluted environments). Green parts of plants are better suited to indicate environmental stress than roots. Their higher structural MDA membrane damage is related to the transport of toxic ions to the shoots by a rapid transpiration stream in the xylem. We found high salinity to be the main factor inducing growth and found it to be correlated with the high pH effect on proline increase in glycophytes (Elder, Reed) and Weeping Alkaligrass, in contrast to Common Glasswort. We suggest that proline accumulation allows osmotic adjustment in the green parts of reeds and alkaligrasses, but may have another function (in Elder). Common Glasswort accumulates large amounts of Na+, which is energetically more effective than proline accumulation for osmotic adjustment. Organic matter affects plant growth and proline levels, but soil salinity and pH alter nutrient availability. Plant distribution along the salinity gradient indicates that Elder is the most salt-sensitive species compared to Reed, Alkaligrass, and Glasswort. Salinity and the lack of control of thick reeds, which compete with other plant groups, affect the distribution of halophytes in saline environments.

期刊论文 2024-06-01 DOI: 10.3390/plants13111550 ISSN: 2223-7747

In semi-arid Mediterranean regions, particularly in some wetland soils, salinity is thought to be an indicator of low-quality soils. In this study, a characterization is presented of the soils surrounding El Hito saline pond (Castilla La Mancha, Central Spain), an ecological halophyte niche within a natural semi-arid steppe land. The main aim is to classify the salt-affected soils and their morphology, genesis, and physico-chemical properties. Four soil profiles were opened with a backhoe machine for sampling and subsequent description on the basis of their pedogenetic morphology. Systematic surface sampling was also performed. Standard methods were followed to measure the soil properties of 27 samples. Overall electrical conductivity (EC) and pH levels of the wetland were mapped (using ArcGIS 3.1.3). Soil salinity at elevated levels was detected, inhibiting plant uptake of water and nutrients. Distinct sub-areas of extreme elevated surface salinity providing specialized plant habitats and poor soil structure were observed, as well as a mainly whitened-yellowish-greenish soil colour due to salt accumulation and poor drainage. The soils also showed alkaline pH values. In most samples, the pH was over 8.5, and EC was higher than 4 (dS m-1), and in several samples higher than 20 (dS m-1). A low sodium (Na) content was detected in the saturation extract where magnesium (Mg+) was the dominant soluble cation, followed by both calcium (Ca+) and sodium (Na+), and then potassium (K+), present in lower proportions. Sulphate (SO42-) and then chloride (Cl-) anions were dominant, although carbon trioxide, (CO3-) and carbonate (CO32-) anions were also present. The percentages of organic carbon (C) were very low, while total nitrogen (TN) and available phosphorus (P) were higher in the upper horizons, suggesting a degree of eutrophication. The present work will increase the existing knowledge about the role of El Hito saline pond, that play a vital ecological role in the broader biosphere, providing new suggestions to readers on how this knowledge can be used to improve these types of ecosystems. In particular, the agricultural pesticides and fertilizers continuously damage the soil fertility as evidenced by the high content of soluble phosphorus found in some points of the Hito saline pond.

期刊论文 2024-05-01 DOI: 10.1111/ejss.13506 ISSN: 1351-0754

Aeluropus lagopoides, a dominant palatable species in various sabkha and coastal regions of Saudi Arabia, can withstand harsh saline environments through phenotypic plasticity. When subjected to grazing, how A. lagopoides adapt phenotypically is currently unknown. There is a breakage in the chain of study on the spatial and temporal expansion strategy of A. lagopoides plants when subjected to different grazing stresses in different saline soil habitats. A grazing experiment was conducted to investigate the phenotypic plasticity and resource allocation pattern response of A. lagopoides in different saline soils. Individual A. lagopoides rhizomes from five saline regions were grown and exposed to varied grazing treatments in the form of clipping, viz; light, moderate, and heavy grazing, as compared to a grazing exclusion control. Our results showed that heavy grazing/clipping significantly decreased the shoot system and above-ground biomass in high-saline region plants in the early season. Plant length, root length, root and shoot biomass, the number of stolons, average stolon length, leaf area, and SLA of A. lagopiodes responded significantly to grazing intensities. A. lagopoides from the Qareenah, Qaseem, and Jizan regions were more tolerant to light grazing than A. lagopoides from the Salwa and Jouf regions. Light grazing showed significantly good re-growth, especially during the late season. Light grazing decreased the synthesis of chlorophyll content. Also, A. lagopiodes reduced the risk caused by reactive oxygen species via the increased accumulation of proline content. Overall, plants adapted to different morphological and physiological strategies to tolerate different levels of grazing intensities by adapting their morphological attributes. Though heavy grazing damages the plant, light and moderate grazing can be allowed to maintain the productivity and economic benefits of sabka habitats where soil conditions are moderately saline.

期刊论文 2024-01-01 DOI: 10.3390/agronomy14010144

The continuous rise in soil salinity and the expansion of saline areas present a worldwide threat to agriculture by reducing the amount of arable land available for crop cultivation. Halophytes, naturally inhabitants of saline environments, are the sole group of plants able to populate and thrive in saline soils. With highly efficient adaptive strategies, these plants tolerate extreme saline conditions indefinitely. Some of these species are metal hyperaccumulators, Aparticularly those growing under saline conditions frequently rich in heavy metals that are often polluted. One mechanism enabling them to tolerate these extreme conditions is the accumulation of osmoprotectant metabolites. Even though these protective compounds are generally produced by plants to help them tolerate extreme environmental conditions, usually halophytes accumulate more osmolytes than glycophytes. AAlthough many publications discuss the potential of halophytes in the remediation of areas polluted by heavy metals, relatively little is documented about the role of compatible solutes in alleviating the toxic effects of heavy metals. This review focuses on the role of the most common osmoprotectant, that is, proline, produced by halophytes to mediate cellular damage caused by the hyperaccumulation of metal ions and addresses the biosynthetic pathways of this compound. Reclaiming land polluted by heavy metals by populating it with halophytes and enhancing osmoprotective solute production through genetic engineering in halophytes presents viable solutions to restore pollution-ridden areas for potential agricultural use worldwide.

期刊论文 2024-01-01 DOI: 10.33927/hjic-2024-20 ISSN: 0133-0276
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页