Human disturbance in the Arctic is increasing. Abrupt changes in vegetation may be expected, especially when spots without vegetation are made available; additionally, climate change alters competition between species. We studied whether 34- to 35-year-old seismic operations had left imprints on local vegetation and whether changes could be related to different soil characteristics. The study took place in Jameson Land in central east Greenland where winter seismic operations in search of oil took place from 1985 to 1989. This area is dominated by continuous dwarf shrub heath with Cassiope tetragona, Betula nana, and Vaccinium uliginosum as dominant species. Using point frame analyses, we registered vascular plants and other surface types in frames along 10-m transects in vehicle tracks (hereafter damages) and in undisturbed vegetation parallel to the track (hereafter references) at eleven study sites. We also measured temperature and pH and took soil samples for analysis. Damaged and reference vegetation types were compared with S & oslash;rensen similarity indices and detrended correspondence analyses. Although most vascular plant species were equally present in damaged vegetation and in references the detrended correspondence analyses showed that at ten out of eleven study sites the damages and references still differed from each other. Graminoids and the herb Polygonum viviparum had the highest occurrence in damages. Shrubs and the graminoid Kobresia myosuroides had the highest occurrence in references. Cassiope tetragona was negatively impacted where vehicles had compacted the snow. Moss, organic crust or biocrust, soil, and sand occurred more often in damages than in references, whereas lichens and litter had the highest occurrence in references. The richness of vascular plant species varied between the eleven study sites, but between damages and references the difference was only up to four species. Temperature was the soil parameter with the most significant differences between damages and references. Total recovery of the damaged vegetation will most likely not occur within several decades. The environmental regulations were important to avoid more serious impacts.
Seasonal freezing and thawing significantly influence the migration and distribution of soil hydrothermal salts. Understanding the dynamics of hydrothermal salt forces in canal foundation soils is crucial for effective canal disease control and optimization. However, the impact on rectangular canals remains poorly understood. Therefore, field-scale studies on water-heat-salt-force-displacement monitoring were conducted for the canal. The study analyzed the changes and interaction mechanisms of water-heat-salt-force in the soil beneath the canal, along with the damage mechanisms and preventive measures. The results indicate that the most rapid changes in temperature, moisture, and salt occur in the subsoil on the canal side, with the greatest depth of freezing. Heat transfer efficiency provides an intuitive explanation for the sensitivity of ground temperature at the junction of the canal wall and subsoil to air temperature fluctuations, as well as the minimal moisture migration in this region under the subcooling effect. The temperature-moisture curve suggests that current waterheat-force and water-heat-salt-force models exhibit a delay in accurately predicting water migration within the subsoil. Rectangular canals are more susceptible to damage under peak freezing conditions, requiring a combined approach of freezing restraint and frost-heaving force to mitigate damage. These findings offer valuable insights for canal design, maintenance, and further research.
A novel framework for nonlinear thermal elastic-viscoplastic (TEVP) constitutive relationships was proposed in this study, incorporating three distinct thermoplasticity mechanisms. These four TEVP formulations, combined with an existing TEVP constitutive equation presented in the companion paper, were integrated into a coupled consolidation and heat transfer (CHT) numerical model. The CHT model accounts for large strain, soil selfweight, creep strains, thermal-induced strains, the relative velocity of fluid and solid phases, varying hydraulic conductivity and compressibility during consolidation process, time-dependent loading, and heat transfer, including thermal conduction, thermo-mechanical dispersion, and advection. The performance of CHT model, incorporating different TEVP constitutive equations, was evaluated through comparing the simulation results with measurements from laboratory oedometer tests. Simulation results, including settlement, excess pore pressure and temperature profiles, showed good agreement with the experimental data. All four TEVP constitutive relationships produced identical results for the consolidation behavior of soil that in the oedometer tests. The TEVP constitutive equations may not have a significant effect on the heat transfer in soil layers because of the identical performance on simulating soil compression. The CHT model, incorporating the four TEVP constitutive equations, was then used to investigate the long-term consolidation and heat transfer behavior of a four layer soil stratum under seasonally cyclic thermal loading in a field test, with excellent agreement observed between simulated results and measured data.
The wheat powdery mildew (WPM) is one of the most severe crop diseases worldwide, affecting wheat growth and causing yield losses. The WPM was a bottom-up disease that caused the loss of cell integrity, leaf wilting, and canopy structure damage with these symptoms altering the crop's functional traits (CFT) and canopy spectra. The unmanned aerial vehicle (UAV)-based hyperspectral analysis became a mainstream method for WPM detection. However, the CFT changes experienced by infected wheats, the relationship between CFT and canopy spectra, and their role in WPM detection remained unclear, which might blur the understanding for the WPM infection. Therefore, this study aimed to propose a new method that considered the role of CFT for detecting WPM and estimating disease severity. The UAV hyperspectral data used in this study were collected from the Plant Protection Institute's research demonstration base, Xinxiang city, China, covering a broad range of WPM severity (0-85 %) from 2022 to 2024. The potential of eight CFT [leaf structure parameter (N), leaf area index (LAI), chlorophyll a + b content (Cab), carotenoids (Car), Car/Cab, anthocyanins (Ant), canopy chlorophyll content (CCC) and average leaf angle (Deg)] obtained from a hybrid method combining a radiative transfer model and random forest (RF) and fifty-five narrow-band hyperspectral indices (NHI) was explored in WPM detection. Results indicated that N, Cab, Ant, Car, LAI, and CCC showed a decreasing trend with increasing disease severity, while Deg and Car/Cab exhibited the opposite pattern. There were marked differences between healthy samples and the two higher infection levels (moderate and severe infection) for Cab, Car, LAI, Deg, CCC, and Car/Cab. N and Ant only showed significant differences between the healthy samples and the highest infection level (severe infection). As Cab, Car, and Ant decreased, the spectral reflectance in the visible light region increased. The decrease in N and LAI was accompanied by a reduction in reflectance across the entire spectral range and the near-infrared area, which was exactly the opposite of Deg. The introduction of CFT greatly improved the accuracy of the WPM severity estimation model with R2 of 0.92. Features related to photosynthesis, pigment content, and canopy structure played a decisive role in estimating WPM severity. Also, results found that the feature importance showed a remarkable interchange as increasing disease levels. Using features that described canopy structure changes, such as optimized soil adjusted vegetation index, LAI, visible atmospherically resistant indices, and CCC, the mild infection stage of this disease was most easily distinguished from healthy samples. In contrast, most severe impacts of WPM were best characterized by features related to photosynthesis (e.g., photochemical reflectance index 515) and pigment content (e.g., normalized phaeophytinization index). This study help deepen the understanding of symptoms and spectral responses caused by WPM infection.
The long-term compression behavior of clay is significantly affected by temperature paths. However, most studies on temperature paths focus on short-term changes in volume and pore pressure, with limited research on how temperature paths affect soil secondary consolidation characteristics. To experimentally investigate the time-dependent compression behavior of lateritic clay under different temperature paths, a series of temperaturecontrolled isotropic consolidation tests from 5 to 50 degrees C were conducted with consideration of heating/cooling rate and thermal cycle paths. The results indicate that the accumulation of thermal-induced pore water pressure increases with the rate of temperature variations, but a faster rate leads to smaller volumetric changes. Moreover, thermal cycling does not cause irreversible thermoplastic volumetric strain with a suitable heating/cooling rate, and the cycle paths do not influence this outcome. Furthermore, the creep rate of heated samples increases significantly, and the heating/cooling rate also affects the creep rate: a slower heating rate results in a faster creep rate. Additionally, the creep behavior ceased after the thermal cycle, and it appears that the thermal cycle paths have no effect on the creep rate. Finally, this study summarizes the mechanism of the influence of temperature on the creep behavior of clay, and reasonable explanations are proposed for the thermo-mechanical behavior caused by different temperature paths.
Energy pile is a green, constant-temperature utilization technology with dual functions of heat exchange and load bearing. Improving its heat transfer efficiency has always been one of the main directions of scholars' research. This study discussed the optimization of heat transfer buried pipe parameters, modification of pile materials, and improvement of working fluid performance within the pipes. Additionally, based on the research achievements of the research team in recent years regarding heat transfer enhancement in energy piles, a comprehensive heat transfer enhancement system is summarized, aiming to provide new ideas and methods for the study of heat transfer enhancement in energy piles. The optimization status of different buried pipe types and pipe parameters is also summarized. The heat transfer performance and mechanical properties of different modified concrete materials are studied. A comparison and analysis of the heat transfer performance and flow characteristics of different types of circulating mediums with nanofluids are conducted, providing new approaches to improve the heat transfer performance of circulating mediums. Finally, discussions and prospects were made on the external environmental conditions around the pile, thermal interference phenomena of pile groups, energy storage concrete, the long-term stability of nanofluids, benefit assessment, and ecological evaluation. These efforts aim to promote research on energy piles both domestically and internationally.
Alpine wet meadow (AWM), an important wetland type on the Qinghai-Tibet Plateau (QTP), is sensitive to climate change, which alters the soil hydrothermal regime and impacts ecological and hydrological functions in permafrost regions. The mechanisms underlying extreme AWM degradation in the QTP and hydrothermal factors controlling permafrost degradation remain unclear. In this study, soil hydrothermal processes, soil heat migration, and the permafrost state were measured in AWM and extremely degraded AWM (EDAWM). The results showed that the EDAWM exhibited delayed onset of both soil thawing and freezing, shortened thawing period, and extended freezing period at the lower boundary of the active layer. The lower ground temperatures resulted in a 0.2 m shallower active layer thickness in the EDAWM compared with the AWM. Moreover, the EDAWM altered soil thermal dynamics by redistributing energy, modifying soil moisture, preserving soil organic matter, and adjusting soil thermal properties. As for energy budget, a substantial amount of heat in the EDAWM was consumed by turbulent heat fluxes, particularly latent heat flux, which reduced the amount of heat transferred to the ground. Additionally, the higher soil organic matter content in EDAWM decreased the annual mean soil thermal conductivity from 1.42 W m- 1 K-1 in AWM to 1.26 W m- 1 K-1 in EDAWM, slowing down heat transfer within the active layer and consequently mitigating permafrost degradation. However, with continued climate warming, the soil organic matter content in EDAWM will inevitably decline due to microbial decomposition in the absence of new organic inputs. As the soil organic matter content diminishes, soil heat transfer processes will likely accelerate, and the permafrost warming rate may surpass that in undistributed AWM. These findings enhance our understanding of how alpine ecosystem succession influences regional hydrological cycles and greenhouse gas emissions.
Zinc (Zn), an essential nutrient element, exhibits hormesis in plants-beneficial at low doses but toxic at high concentrations. To understand the molecular mechanisms underlying this hormetic response with low-dose stimulation and high-dose inhibition in wheat, we conducted transcriptomic analysis under different Zn treatments. Low Zn concentration (50 mu M) promoted plant growth by maintaining chlorophyll content, enhancing MAPK signaling, phytohormone signaling, glutathione metabolism, nitrogen metabolism, and cell wall polysaccharide biosynthesis. High Zn concentration (500 mu M) induced ultrastructural damage and suppressed photosynthesis, chlorophyll metabolism, and secondary metabolisms, while upregulating glutathione metabolism. Molecular docking revealed that hydrogen bonds between Zn and antioxidant enzymes facilitated reactive oxygen species scavenging. Notably, exogenous glutathione (GSH) application enhanced wheat tolerance to Zn stress by strengthening the antioxidant defense system and improving photosynthetic capacity. Our findings elucidate the underlying mechanisms of Zn hormesis in wheat and demonstrate the application potential of glutathione in mitigating Zn toxicity, providing strategies for managing Zn-contaminated soils.
This study investigates the potential of green-fabricated manganese dioxide (MnO2) nanoparticles (NPs) to mitigate chromium (Cr) toxicity in wheat, presenting a novel approach to enhancing ion homeostasis and physiological resilience under Cr stress. Chromium contamination in agricultural soils is a significant concern, severely impacting crop productivity and disrupting the physiological homeostasis of wheat. Chromium exposure compromises nutrient uptake, induces oxidative stress, and impairs plant growth and yield. This study explored the use of green-fabricated MnO2NPs to mitigate Cr-induced oxidative stress in two bread wheat cultivars, Borlaug-16 and SKD-1. Seed nano-priming with MnO2NPs (100, 250, and 500 mg kg-1) was applied, followed by Cr (100 mg kg-1) exposure, and key physiological, biochemical, and ionomic responses were evaluated. Manganese dioxide nanoparticles significantly reduced Cr uptake and improved ion transport. In Borlaug-16, NP250 enhanced seedling height by 74 %, while NP100 reduced H2O2and TBARS by 60.28 % and 50.17 %, respectively, indicating improved oxidative stress tolerance. SKD-1 exhibited greater Cr stress tolerance, with NP250 improving root length by 31.03 % and relative water content by 56.66 %, supporting better water retention. Additionally, MnO2NP treatments boosted antioxidant enzyme activities, increasing APX and GPX by up to 12.47 %, and restored root and leaf anatomy, reversing Cr-induced structural damage. Furthermore, MnO2NPs enhanced the uptake of essential nutrients such as calcium, potassium, and magnesium, while restricting Cr translocation, improving overall nutrient efficiency. These findings emphasize the potential of MnO2NPs as an eco-friendly strategy for enhancing crop resilience and promoting sustainable agriculture in Cr-contaminated soils.
Durum wheat cultivation is increasingly threatened by viral diseases worldwide. Soil-borne cereal mosaic virus (SBCMV) and wheat spindle streak mosaic virus (WSSMV) cause significant crop losses in Europe. These viruses are transmitted through a soil-inhabiting vector, the plasmodiophoromycota Polymyxa graminis Led. There are very few methods available to eradicate P. graminis, whose resting spores survive in infested soil for decades, but they are either too expensive or not environmentally friendly. Therefore, it is crucial to develop resistant wheat varieties to mitigate the damage. For this purpose, more than 200 durum wheat genotypes, mostly landraces, were selected from the Global Durum Wheat Panel germplasm collection. Then, an experiment was conducted in a semi-controlled environment: the genotypes were sown in pots containing soil infested by P. graminis carrying SBCMV and WSSMV and maintained through the winter period. In early spring, visual assessment of viral symptomatology was performed. Subsequently, the viral loads of the two viruses in leaf tissues were determined through qRT-PCR analysis. The tested genotypes exhibited different responses to the two viruses: SBCMV showed very diversified viral loads among genotypes, whereas WSSMV infected all genotypes. We identified 23 genotypes, with low viral loads of both viruses and reduced symptoms, that could be of particular interest for breeders aiming at new resistant durum wheat varieties. A pilot GWAS allowed to identify genomic regions putatively associated to resistance to SBCMV or WSSMV, as well as possible candidate genes involved in these traits.