Extreme heat events in the summer of 2022 were observed in Eurasia, North America and China. Glaciers are a unique indicator of climate change, and the European Alps experienced substantial glacier mass loss as a result of the conditions in 2022, which prompted a wide range of community concerns. However, relevant findings for glaciers in China have not been currently reported. Here, we document the response of Urumqi Glacier No. 1 in the eastern Tien Shan to the extreme heat observed in 2022 based on in situ measurements that span more than 60 years. In 2022, Urumqi Glacier No. 1 exhibited the second largest annual mass loss on record, and the summer mass balance was the most negative on record. The hottest summer on record and relatively lower solid precipitation ratio contributed to the exceptional mass losses at Urumqi Glacier No. 1 in 2022, demonstrating the significant influence of heatwaves on extreme glacier melt in China.
Extreme heat events in the summer of 2022 were observed in Eurasia, North America and China. Glaciers are a unique indicator of climate change, and the European Alps experienced substantial glacier mass loss as a result of the conditions in 2022, which prompted a wide range of community concerns. However, relevant findings for glaciers in China have not been currently reported. Here, we document the response of Urumqi Glacier No. 1 in the eastern Tien Shan to the extreme heat observed in 2022 based on in situ measurements that span more than 60 years. In 2022, Urumqi Glacier No. 1 exhibited the second largest annual mass loss on record, and the summer mass balance was the most negative on record. The hottest summer on record and relatively lower solid precipitation ratio contributed to the exceptional mass losses at Urumqi Glacier No. 1 in 2022, demonstrating the significant influence of heatwaves on extreme glacier melt in China.
A heatwave in Siberia starting in January 2020, initiated by a wave 5 pattern in the jet stream, caused the surface air temperature to reach 38 degrees C in June with important impacts on ecosystems and water resources. Here we show that this dynamical setup started a chain of events leading to this long-lasting and unusual event: positive temperature anomalies over Siberia caused early snowmelt, leading to substantial earlier vegetation greening accompanied by decreased soil moisture and browning in the summer. This soil moisture depletion and vegetation browning, in turn, increased the impact of the heatwave on the atmosphere through a land-atmosphere feedback. This line of evidence suggests that large-scale dynamics and land-atmosphere interactions both contributed to the magnitude and persistence of this record-breaking heatwave, in addition to the background global warming impact on mean temperature. Here, we describe a carry-over effect in Siberia from a spring positive temperature anomaly into summer dryness and browning, with retroaction into the atmosphere. With the Arctic warming twice as fast as the global average, this event foreshadows the future of northern latitude continents and emphasizes the importance of both atmospheric dynamics and land-atmosphere interactions in the future as the climate changes. More frequent similar events could have major consequences on the carbon cycle in these carbon-rich northern latitude regions.
Marine heatwaves (MHWs) are becoming increasingly frequent and intense around China, impacting marine ecosystems and coastal communities. Accurate forecasting of MHWs is crucial for their management and mitigation. In this study, we assess the forecasting ability of the global eddy-resolving ocean forecast system LICOM Forecast System (LFS) for the MHW events in October 2021 around China. Our results show that the 1-day lead forecast by the LFS accounts for up to 79% of the observed MHWs, with the highest skill during the initial and decay periods. The forecasted duration and intensity of the MHW event are consistent with observations but with some deviations in specific regions of the Yellow and South China seas. A detailed analysis of the heat budget reveals that the forecasted shortwave radiation flux is a key factor in the accuracy of the forecasted MHW duration and intensity. The oceanic dynamic term also greatly contributes to the accuracy in the southern Yellow Sea. In addition, the increasing bias of the forecasted duration and intensity with lead time are mainly caused by the underestimated shortwave radiation. Our findings suggest that improving the accuracy of oceanic dynamic processes and surface radiation fluxes in the LFS could be a promising direction to enhance the forecasting ability of marine extreme events such as MHWs.
Rockfall is one of the main geomorphological processes that affects the evolution and stability of rock-walls. At high elevations, rockfall is largely climate-driven, very probably because of the warming of rock-wall permafrost. So with the ongoing global warming that drives the degradation of permafrost, the related hazards for people and infrastructure could continue to increase. The heatwave of summer 2015, which affected Western Europe from the end of June to August, had a serious impact on the stability of high-altitude rock-walls, including those in the Mont Blanc massif. A network of observers allowed us to survey the frequency and intensity of rock-wall morphodynamics in 2015, and to verify its relationship with permafrost. These observations were compared with those of the 2003 summer heatwave, identified and quantified by remote sensing. A comparison between the two years shows a fairly similar rockfall pattern in respect of total volumes and high frequencies (about 160 rockfalls >100 m(3)) but the total volume for 2003 is higher than the 2015 one (about 300,000 m(3) and 170,000 m(3) respectively). In both cases, rockfalls were numerous but with a low magnitude and occurred in permafrost-affected areas. This suggests a sudden and remarkable deepening of the active layer during these two summers, rather than a longer-term warming of the permafrost body. (C) 2017 Elsevier B.V. All rights reserved.