Natural rubber (NR) is a material with a wide range of industrial and commercial applications, including agriculture, defense, transportation, and domestic use. However, the mechanical properties of natural rubber treated by traditional acid coagulation are limited, which restricts its application in high-end products. Furthermore, the wastewater generated also causes soil acidification. Consequently, there is a necessity to investigate new coagulation methods to enhance the comprehensive performance of natural rubber and reduce environmental pollution. In this work, a novel method for the preparation of environmentally friendly high-performance natural rubber by alkaline protease/calcium chloride coagulation of natural rubber (AC-NR) is reported. The research demonstrates that the products of protein cleavage by alkaline protease together with calcium ions can greatly enhance the cross-linking between rubber particles, form the network structure of natural rubber well. Furthermore, increasing the pH at the isoelectric point of the discharged wastewater reduces the impact on soil acidification. In comparison with those from conventional acid coagulation of natural rubber (A-NR), the tensile strength of AC-NR was increased by 7.9 MPa, the tear strength was increased by 5.3 kN/m, the final temperature rise was lowered by 6.5 degrees C, and abrasion performance was improved. This study demonstrates that by utilizing the collaborative impact of alkaline protease and calcium chloride on the rubber molecular chain during the coagulation process of natural rubber, environmentally friendly high-performance natural rubber with excellent mechanical properties and reduced environmental pollution can be prepared without the necessity for chemical modification or cumbersome processes, which is conducive to the green development and high-quality pursuit of NR materials.
Mars is increasingly considered for colonization by virtue of its Earth-like conditions and potential to harbor life. Responding to challenges of the Martian environment and the complexity of transporting resources from Earth, this study develops a novel geopolymer-based high-performance Martian concrete (HPMC) using Martian soil simulant. The optimal simulant addition, ranging from 30% to 70% of the total mass of the binders, was explored to optimize both the performance of HPMC and its cost-effectiveness. Additionally, the effects of temperature (-20 degrees C-40 degrees C) and atmospheric (ambient and carbonated) curing conditions, as well as steel fibre addition, were investigated on its long-term compressive and microstructural performance. Optimal results showed that HPMC with 50% regolith simulant achieved the best 7-day compressive strength (62.8 MPa) and the remarkable efficiency improvement, a result of ideal chemical ratios and effective geopolymerization reaction. Under various temperature conditions, sub-zero temperatures (-20 degrees C and 0 degrees C) diminished strength due to reduced aluminosilicate dissolution and gel formation. In contrast, specimens cured at 40 degrees C and 20 degrees C, respectively, showed superior early and long-term strengths, with the 40 degrees C potential for moisture loss related shrinkage cracking and reduced geopolymerization. Regarding the atmospheric environment, carbonation curing and steel fibre addition both improved the matrix compactness and compressive strength, with carbon-cured fibre-reinforced HPMC achieving 98.3 MPa after 60 days. However, long-term exposure to high levels of CO2 eventually reduced the fibres' toughening effect and caused visible damages on steel fibres.
Most of the current studies rely on simulated brine corrosion environments and lack long-term investigations into concrete corrosion damage evolution under actual corrosive conditions. In this paper, high-performance concrete (HPC) with various mix ratios is designed in the context of the Qinghai Salt Lake region in China, and the evolution of corrosion damage of HPC with different water-binder ratios (W/B) and different fly ash (FA) admixtures under long-term field exposure conditions is obtained by testing the ultrasonic velocity and strengths of the HPC in the field exposure of the HPC in the Qinghai Salt Lake region. The results show that the corrosion resistance of HPC is related to its water-binder ratio and mineral admixture type and dosage under the exposure of 8 years in Qinghai Salt Lake area. HPC with a fly ash dosage of 15-35% and silica fume dosage of 10% exhibits better corrosion resistance when the water-binder ratio (W/B) is between 0.24 and 0.38. The dependence relationship between the corrosion resistance coefficient of HPC and the relative dynamic elastic modulus (Erd) and 28 d standard maintenance strength was also established. The Erd of HPC with a corrosion resistance coefficient of 0.80 or above was 0.73-0.93, not 0.60, which provides an important experimental basis for determining the corrosion damage index of HPC in the high-saline brine environment of the salt lake.
Oxalate esters and isosorbide serve as intriguing polymer building blocks, as they can be sourced from renewable resources, such as CO2 and glucose, and the resulting polyesters offer outstanding material properties. However, the low reactivity of the secondary hydroxyl groups makes it difficult to generate high-molecular-weight polymers from isosorbide. Combining diaryl oxalates with isosorbide appears to be a promising approach to produce high-molecular-weight isosorbide-based polyoxalates (PISOX). This strategy seems to be scalable, has a short polymerization time (<5 h), and uniquely, there is no need for a catalyst. PISOX demonstrates outstanding thermal, mechanical, and barrier properties; its barrier to oxygen is 35 times better than PLA, it possesses mechanical properties comparable to high-performance thermoplastics, and the glass transition temperature of 167 degrees C can be modified by comonomer incorporation. What makes this high-performance material truly exceptional is that it decomposes into CO2 and biomass in just a few months in soil under home-composting conditions and it hydrolyzes without enzymes present in less than a year in 20 degrees C water. This unique combination of properties has the potential to be utilized in a range of applications, such as biomedical uses, water-resistant coatings, compostable plastic bags for gardening and agriculture, and packaging plastics with diminished environmental impact.
Cement production in the world market is steadily increasing. In 2000, it was 1600 million tons, while as of 2013, the annual amount exceeded 4000 million tons. The burning of cement clinker is associated with the generation of waste. It is estimated that the amount of cement kiln dust (CKD), during combustion, reaches about 15-20%, which means 700 million tons per year. However, not all types of by-products are reusable due to high alkali, sulfate, and chloride contents, which can adversely affect the environment. One environmentally friendly solution may be to use CKD in the production of high-performance concrete (HPC), as a substitute for some of the cement. This paper presents a study of the short- and long-term physical and mechanical properties of HPC with 5%, 10%, 15%, and 20% CKD additives. The experiments determined density, water absorption, porosity, splitting tensile strength, compressive strength, modulus of elasticity, ultrasonic pulse velocity, and evaluated the microstructure of the concrete. The addition of CKD up to 10% caused an increase in the 28- and 730-day compressive strengths, while the values decreased slightly when CKD concentration increased to 20%. Splitting tensile strength decreased proportionally with 5-20% amounts of CKD regardless of HPC age. Porosity, absorbability, and ultrasonic pulse velocity decreased with increasing cement dust, while the bulk density increased for HPC with CKD. Microstructure analyses showed a decrease in the content of calcium silicate hydrate (C-S-H), acceleration of setting, and formation of wider microcracks with an increase in CKD. From the results, it was shown that a 15% percentage addition of CKD can effectively replace cement in the production of HPC and contribute to reducing the amount of by-product from the burning of cement clinker.