共检索到 3

Rapid permafrost degradation is observed in northern regions as a result of climate change and expanding economic development. Associated increases in active layer depth lead to thermokarst development, resulting in irregular surface topography. In Central Yakutia, significant areas of the land surface have been deteriorated by thermokarst; however, no mitigation or land rehabilitation efforts are undertaken. This paper presents the results of numerical modeling of the thermal response of permafrost to changes in the active layer hydrothermal regime using field data from the village of Amga, Republic of Sakha (Yakutia), and mathematical analysis. The results suggest that restoring a thick ice-enriched layer will require increasing the pre-winter soil moisture contents in order to increase the effective heat capacity of the active layer. Snow removal or compaction during the winter is recommended to maximize permafrost cooling. The thickness of the restored transition layer varies from 0.3 to 1.3 m depending on soil moisture contents in the active layer. The modeling results demonstrate that damaged lands can be restored through a set of measures to lower the subsurface temperatures. A combination of the insulating layer (forest vegetation) and the high heat capacity layer (transition layer) in the atmosphere-ground system would be more effective in providing stable geocryological conditions.

2023-01-01 Web of Science

The release of greenhouse gases from the large organic carbon stock in permafrost deposits in the circumarctic regions may accelerate global warming upon thaw. The extent of this positive climate feedback is thought to be largely controlled by the microbial degradability of the organic matter preserved in these sediments. In addition, weathering and oxidation processes may release inorganic carbon preserved in permafrost sediments as CO2, which is generally not accounted for. We used C-13 and C-14 analysis and isotopic mass balances to differentiate and quantify organic and inorganic carbon released as CO2 in the field from an active retrogressive thaw slump of Pleistocene-age Yedoma and during a 1.5-years incubation experiment. The results reveal that the dominant source of the CO2 released from freshly thawed Yedoma exposed as thaw mound is Pleistocene-age organic matter (48-80%) and to a lesser extent modern organic substrate (3-34%). A significant portion of the CO2 originated from inorganic carbon in the Yedoma (17-26%). The mixing of young, active layer material with Yedoma at a site on the slump floor led to the preferential mineralization of this young organic carbon source. Admixtures of younger organic substrates in the Yedoma thaw mound were small and thus rapidly consumed as shown by lower contributions to the CO2 produced during few weeks of aerobic incubation at 4 degrees C corresponding to approximately one thaw season. Future CO2 fluxes from the freshly thawed Yedoma will contain higher proportions of ancient inorganic (22%) and organic carbon (61-78%) as suggested by the results at the end, after 1.5 years of incubation. The increasing contribution of inorganic carbon during the incubation is favored by the accumulation of organic acids from microbial organic matter degradation resulting in lower pH values and, in consequence, in inorganic carbon dissolution. Because part of the inorganic carbon pool is assumed to be of pedogenic origin, these emissions would ultimately not alter carbon budgets. The results of this study highlight the preferential degradation of younger organic substrates in freshly thawed Yedoma, if available, and a substantial release of CO2 from inorganic sources.

2022-01-19 Web of Science

The most massive and fast-eroding thaw slump of the Northern Hemisphere located in the Yana Uplands of Northern Yakutia was investigated to assess in detail the cryogenic inventory and carbon pools of two distinctive Ice Complex stratigraphic units and the uppermost cover deposits. Differentiating into modern and Holocene near-surface layers (active layer and shielding layer), highest total carbon contents were found in the active layer (18.72 kg m(-2)), while the shielding layer yielded a much lower carbon content of 1.81 kg m(-2). The late Pleistocene upper Ice Complex contained 10.34 kg m(-2)total carbon, and the mid-Pleistocene lower Ice Complex 17.66 kg m(-2). The proportion of organic carbon from total carbon content is well above 70% in all studied units with 94% in the active layer, 73% in the shielding layer, 83% in the upper Ice Complex and 79% in the lower Ice Complex. Inorganic carbon is low in the overall structure of the deposits.

2020-09-01 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页