共检索到 2

. Two cool-season putting green turfgrass species, annual bluegrass and creeping bentgrass, are differential in ice encasement tolerance. Physiological mechanisms associated with creeping bentgrass ice encasement tolerance and annual bluegrass susceptibility are not understood. The objectives were to evaluate oxygen, ethylene, and CO2 content within the upper soil space of the plants while frozen and immediately after ice melt after 0, 5, 10, 20, and 28 days of ice encasement (2.54 cm of ice) in growth chamber conditions. Following ice melt, plant samples were separated into leaf, crown, and root tissues and used to evaluate carbohydrate and amino acid content. Annual bluegrass exhibited higher damage (slower recovery rates) on most sampling days compared with creeping bentgrass. The organs that were most damaged and exhibited a differential principal component analysis snapshot, were the leaf and crown tissues. Creeping bentgrass may preserve leaf and crown tissues for postwinter recovery whereas significant metabolic changes occur in annual bluegrass leaves and crowns. Creeping bentgrass retained total amino acids in leaves following ice encasement whereas total leaf amino acid levels declined in annual bluegrass. Specific carbohydrates and amino acids such as the ability to maintain high levels of fructose, asparagine, and proline may be important indicators of the tolerance to ice encasement stress. On the basis of more prominent carbohydrate and amino acid loss in leaves and crowns and higher levels of CO2 evolution, annual bluegrass may exhibit a higher metabolism and/or tissue damage during ice encasement compared with creeping bentgrass, which could reduce spring recuperative potential.

期刊论文 2024-07-01 DOI: 10.21273/JASHS05394-24 ISSN: 0003-1062

Climate change is causing pronounced shifts during winter in the US, including shortening the snow season, reducing snowpack, and altering the timing and volume of snowmelt-related runoff. These changes in winter precipitation patterns affect in-stream freeze-thaw cycles, including ice and snow cover, and can trigger direct and indirect effects on in-stream physical, chemical, and biological processes in similar to 60% of river basins in the Northern Hemisphere. We used high-resolution, multi-parameter data collected in a headwater stream and its local environment (climate and soil) to determine interannual variability in physical, chemical, and biological signals in a montane stream during the winter of an El Nino and a La Nina year. We observed similar to 77% greater snow accumulation during the El Nino year, which caused the formation of an ice dam that shifted the system from a primarily lotic to a lentic environment. Water chemistry and stream metabolism parameters varied widely between years. They featured anoxic conditions lasting over a month, with no observable gross primary production (GPP) occurring under the ice and snow cover in the El Nino year. In contrast, dissolved oxygen and GPP remained relatively high during the winter months of the La Nina year. These redox and metabolic changes driven by changes in winter precipitation have significant implications for water chemistry and biological functioning beyond the winter. Our study suggests that as snow accumulation and hydrologic conditions shift during the winter due to climate change, hot-spots and hot-moments for biogeochemical processing may be reduced, with implications for the downstream movement of nutrients and transported materials.

期刊论文 2022-09-29 DOI: 10.3389/frwa.2022.1003159
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页