共检索到 3

Permafrost on the Qinghai-Tibet Plateau (QTP) undergoes significant thawing and degradation, which affects the hydrological processes, ecosystems and infrastructure stability. The ground deformation, a key indicator of permafrost degradation, can be quantified via geodetic observations, especially using multi-temporal InSAR techniques. The previous InSAR studies, however, either rely on data-driven models or Stefan-equation-based models, which are both lacking of consideration of the spatial-temporal variations of freeze-thaw processes. Furthermore, the magnitudes and patterns of the permafrost-related ground deformation over large scales (e.g., 1 x 10(5) km(2) or larger) is still insufficiently quantified or poorly understood. In this study, to account for the spatial heterogeneity of freeze-thaw processes, we develop a permafrost-tailored InSAR approach by incorporating a MODIS-land-surface-temperature-integrated ground deformation model to reconstruct the seasonal and long-term deformation. Utilizing the approach to Sentinel-1 SAR images on the vast regions of about 140,000 km(2) of the central QTP during 2014-2019, we observe widespread seasonal deformation up to about 80 mm with a mean value of about 10 mm and linear subsidence up to 20 mm/year. We apply the geographical detector to determine the controlling factors on the permafrost-related deformation. We find that the slope angle is the primary controller on the seasonal deformation: strong magnitudes and variations of seasonal deformation are most pronounced in flat or gentle-slope regions. The aspect angle, vegetation and soil bulk density exhibit a certain correlation with seasonal deformation as well. Meanwhile, we find that a linear subsidence is higher in the regions with high ground ice content and warm permafrost. It indicates that warm and ice-rich permafrost regions are more vulnerable to extensive long-term subsidence. We also observe that the cold permafrost regions experience lower linear subsidence even with high ground ice content, which indicate ice loss is limited. Thus, we infer that under continuously warming, the transition from cold permafrost to warm permafrost may lead to more extensive ground ice melting. Moreover, the strong subsidence/uplift signals surrounding some lakes suggesting that the change of local hydrological conditions may induce localized permafrost degradation/aggradation. Our study demonstrates the capability of the permafrost-tailored InSAR approach to quantify the permafrost freeze-thaw dynamics as well as their spatial-temporal patterns over large scales in vast permafrost areas.

期刊论文 2023-08-01 DOI: http://dx.doi.org/10.1016/j.rse.2021.112778 ISSN: 0034-4257

Lake-terminating glaciers are among the most severely retreating glacier types in high mountain areas. However, the characteristic of being covered by glacial lakes after retreat makes it hard to estimate their actual ice loss in recent years, as does the contribution of different parts in ice loss, which leads to significant obstacles not only in evaluating solid water resources but understanding inter-relationships between glacial ice and glacial lakes. This study presents a detailed investigation of Jiongpu Co, one of the biggest glacial lakes in the Tibetan Plateau, including its bathymetry and area evolution. The ice loss in the last two decades was analyzed using a multisource DEM dataset. The main results showed that from 1976 to 2021, Jiongpu Co had expanded from 1.19 +/- 0.09 km2 to 5.34 +/- 0.07 km2. The volume of Jiongpu Co showed a surprising increment from 0.09 +/- 0.004 Gt to 0.66 +/- 0.03 Gt from 1976 to 2021, leading to a subaqueous equivalent ice loss of 0.32 +/- 0.01 Gt water from 2000 to 2020 and resulting in an underestimated ice loss of 0.06 Gt, 19% compared with previous evaluations. The total ice loss of the Jiongpu glacier was 1.52 +/- 0.37 Gt from 2000 to 2020, and more than 1/3 ice loss was related to lake expansion (0.32 +/- 0.01 Gt underwater, 0.19 +/- 0.02 Gt above water). This study makes a further contribution to the understanding of ice loss in the complicated system of lake-terminating glaciers.

期刊论文 2022-07-01 DOI: http://dx.doi.org/10.3390/rs16163027

Permafrost on the Qinghai-Tibet Plateau (QTP) undergoes significant thawing and degradation, which affects the hydrological processes, ecosystems and infrastructure stability. The ground deformation, a key indicator of permafrost degradation, can be quantified via geodetic observations, especially using multi-temporal InSAR techniques. The previous InSAR studies, however, either rely on data-driven models or Stefan-equation-based models, which are both lacking of consideration of the spatial-temporal variations of freeze-thaw processes. Furthermore, the magnitudes and patterns of the permafrost-related ground deformation over large scales (e.g., 1 x 10(5) km(2) or larger) is still insufficiently quantified or poorly understood. In this study, to account for the spatial heterogeneity of freeze-thaw processes, we develop a permafrost-tailored InSAR approach by incorporating a MODIS-land-surface-temperature-integrated ground deformation model to reconstruct the seasonal and long-term deformation. Utilizing the approach to Sentinel-1 SAR images on the vast regions of about 140,000 km(2) of the central QTP during 2014-2019, we observe widespread seasonal deformation up to about 80 mm with a mean value of about 10 mm and linear subsidence up to 20 mm/year. We apply the geographical detector to determine the controlling factors on the permafrost-related deformation. We find that the slope angle is the primary controller on the seasonal deformation: strong magnitudes and variations of seasonal deformation are most pronounced in flat or gentle-slope regions. The aspect angle, vegetation and soil bulk density exhibit a certain correlation with seasonal deformation as well. Meanwhile, we find that a linear subsidence is higher in the regions with high ground ice content and warm permafrost. It indicates that warm and ice-rich permafrost regions are more vulnerable to extensive long-term subsidence. We also observe that the cold permafrost regions experience lower linear subsidence even with high ground ice content, which indicate ice loss is limited. Thus, we infer that under continuously warming, the transition from cold permafrost to warm permafrost may lead to more extensive ground ice melting. Moreover, the strong subsidence/uplift signals surrounding some lakes suggesting that the change of local hydrological conditions may induce localized permafrost degradation/aggradation. Our study demonstrates the capability of the permafrost-tailored InSAR approach to quantify the permafrost freeze-thaw dynamics as well as their spatial-temporal patterns over large scales in vast permafrost areas.

期刊论文 2022-01-01 DOI: 10.1016/j.rse.2021.112778 ISSN: 0034-4257
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页