在列表中检索

1

共检索到 1

Floods are considered to be among the most dangerous and destructive geohazards, leading to human victims and severe economic outcomes. Yearly, many regions around the world suffer from devasting floods. The estimation of flood aftermaths is one of the high priorities for the global community. One such flood took place in northern Libya in September 2023. The presented study is aimed at evaluating the flood aftermath for Derna city, Libya, using high resolution GEOEYE-1 and Sentinel-2 satellite imagery in Google Earth Engine environment. The primary task is obtaining and analyzing data that provide high accuracy and detail for the study region. The main objective of study is to explore the capabilities of different algorithms and remote sensing datasets for quantitative change estimation after the flood. Different supervised classification methods were examined, including random forest, support vector machine, na & iuml;ve-Bayes, and classification and regression tree (CART). The various sets of hyperparameters for classification were considered. The high-resolution GEOEYE-1 images were used for precise change detection using image differencing (pixel-to-pixel comparison and geographic object-based image analysis (GEOBIA) for extracting building), whereas Sentinel-2 data were employed for the classification and further change detection by classified images. Object based image analysis (OBIA) was also performed for the extraction of building footprints using very high resolution GEOEYE images for the quantification of buildings that collapsed due to the flood. The first stage of the study was the development of a workflow for data analysis. This workflow includes three parallel processes of data analysis. High-resolution GEOEYE-1 images of Derna city were investigated for change detection algorithms. In addition, different indices (normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), transformed NDVI (TNDVI), and normalized difference moisture index (NDMI)) were calculated to facilitate the recognition of damaged regions. In the final stage, the analysis results were fused to obtain the damage estimation for the studied region. As the main output, the area changes for the primary classes and the maps that portray these changes were obtained. The recommendations for data usage and further processing in Google Earth Engine were developed.

期刊论文 2025-02-01 DOI: 10.3390/rs17040616
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页