To address the engineering problems of road subsidence and subgrade instability in aeolian soil under traffic loads, the aeolian soil was improved with rubber particles and cement. Uniaxial compression tests and Digital speckle correlation method (DSCM) were conducted on rubber particles-cement improved soil (RP-CIS) with different mixing ratios using the WDW-100 universal testing machine. The microcrack and force chain evolution in samples were analysed using PFC2D. The results showed that: (1) The incorporation of rubber particles and cement enhanced the strength of the samples. When the rubber particles content was 1% and the cement content was 5%, the uniaxial compressive strength of the RP-CIS reached its maximum. Based on the experimental results, a power function model was established to predict the uniaxial compressive strength of RP-CIS; (2) The deformation of the samples remains stable during the compaction stage, with cracks gradually developing and penetrating, eventually entering the shear failure stage; (3) The crack and failure modes simulated by PFC2D are consistent with the DSCM test. The development of microcracks and the contact force between particles during the loading are described from a microscopic perspective. The research findings provide scientific support for subgrade soil improvement and disaster prevention in subgrade engineering.
A series of large-scale (1:13) model tests of multi-stage loading and unidirectional multi-cycle loading were conducted on semi-rigid piles before and after cement-soil reinforcement in clay. The difference of ultimate bearing capacity between unreinforced and reinforced piles under different criterions is discussed, and their bending moment and displacement distribution rules are revealed. Meanwhile, the cyclic bearing behaviour of the unreinforced and reinforced piles are compared and analyzed, including cyclic load-displacement response, unloading stiffness, cumulative peak & residual displacement, peak & locked in moment. The test results show that the ultimate bearing capacity of the large diameter pile is increased by 34.4 % and the initial stiffness is increased by 56.8 % (reinforced width is 3D and depth is 1D) in the multistage loading test. Comparing the monotonic and cyclic load-displacement curves of unreinforced and reinforced piles obtained by multi-stage loading test and unidirectional multi-cycle loading test respectively, it is found that when the applied load is small, the curve obtained from multistage loading test is almost coincident with the first cycle envelope of all load levels in 1-way multi-cycle loading test, indicating that the cyclic effect is not significant. As the load increases, the difference between the curves becomes larger, indicating that the cyclic loading of higher amplitude causes greater soil disturbance. In addition, after applying cement-soil to the shallow soil around monopile, cement-soil reinforced pile exhibits a more rigid response, specifically manifested as an initial unloading stiffness of 1.76 times that of unreinforced pile, and a slower stiffness degradation rate. Meanwhile, the cyclic peak displacement & residual displacement accumulation of reinforced piles are smaller than that of the unreinforced pile, thereby reducing the development of the locked in moment.
Precast prestressed high-strength concrete (PHC) pipe pile with cement-improved soil is a novel pile foundation technique that has been extensively utilized in contemporary years due to the enhanced lateral load-bearing capacity in soft grounds. However, though several studies have shown the damage mechanism of single piles with cement-improved soil, the group behavior of such pile foundations is still largely unexplored. Hence, this article aims to illustrate the lateral capacity and tension-induced failure characteristics of single and 1 x 2 group PHC piles reinforced by cement-improved soil. Extensive 3D nonlinear finite element analyses have been performed and the precision of the numerical models is confirmed by a previous experimental-numerical study. The effects of pile spacing, embedment length, and cement-improved soil thickness were examined in terms of various lateral responses and damages. Results have revealed that the addition and thickening of CIS around core piles enhances the overall pile performance and protects the core pile from excessive tensile damage. Declines in head displacement and bending moment were found to be up to 45 % and 25 % for single piles, and up to 47 % and 24 % for group piles, respectively. Moreover, the presence of CIS makes the stress distribution mechanism between the trailing and leading piles in group arrangement more uniform. Results of this study are expected to provide valuable insights for a better understanding of the damage behavior of group precast piles reinforced with cement-improved soil.
Expansive soil exhibits significant swellings and shrinkages, which may result in severe damage or the collapse of structures built upon it. Calcium-based admixtures, such as lime, are commonly used to improve this problematic soil. However, traditional chemical additions can increase significant environmental stress. This paper proposes a sustainable solution, namely, the use of lignin fiber (LF) from the paper industry to partially replace lime as an amendment for expansive soils. Both the macroscopic and microscopic characteristics of the lignin fiber-treated expansive soil are extensively studied. The results show that the mechanical properties of expansive soil are improved by using lignin fiber alone. Under the condition of an optimal dosage of 8%, the compressive strength of lignin fiber-modified soil can reach 193 kPa, the shear strength is increased by 40% compared with the untreated soil, and the water conductivity is also improved with the increase in dosage. In addition, compared with 2% lime-modified soil, the compressive strength of 8% lignin fiber- and 2% lime composite-treated expansive soil increased by 50%, the cohesion increased by 12%, and the water conductivity decreased significantly. The microstructure analysis shows that at an 8% lignin fiber content, lignin fibers interweave into a network in the soil, which effectively enhances the strength and stability of the improved soil. Simultaneously, the fibers can form bridges across the adjacent micropores, leading to the merging of pores and transforming fine, dispersed micropores into larger, connected macropores. Lime promotes the flocculation of soil particles, forming larger aggregates and thus resulting in larger pores. The addition of fibers exerts an inhibitory effect on the flocculation reaction in the composite-improved soil. In conclusion, lignin fibers are an effective addition used to partially replace calcium admixture for the treatment of expansive soil, which provides a sustainable and environmentally friendly treatment scheme for reducing industrial waste.