In this study, the mitigating effects of CaO NPs obtained from pomegranate extract via environmentally friendly green synthesis on CdCl2 stress in two varieties (Yolboyu and Kirac) of Turkish Kavilca wheat (Triticum dicoccum Schrank) under in vitro callus culture conditions were investigated. The calluses developed from embryos of both wheat varieties were exposed to either CaO NPs alone (1 and 2 mg/L), CdCl2 alone (1 or 10 mM) or the different combinations of these two compounds in MS medium for 4 weeks. Changes in the expressions of two genes (Traes_5BL_9A790E8CF and Traes_6BL_986D595B9) known to be involved in wheat's response to CdCl2 stress were analyzed by qRT-PCR. Additionally, certain physiological parameters, such as lipid peroxidation (LPO), H2O2, proline and soluble sugar content, and SEM-EDX analysis were used to assess the response of calluses to the applications. The CaO NPs treatments alone generally upregulated the expression of the 5BL and 6BL genes, while the CdCl2 applications decreased their expression in both cultivars. The CaO NPs reduced the proline content in both cultivars compared to the control. Co-treatment with CdCl2 and CaO NPs increased the sugar content and decreased the MDA content, but did not cause a significant change in the H2O2 content. SEM analysis showed that when CdCl2 and CaO NPs were applied to calluses together, the membranous and mucilaginous spherical structures were regained. The application of CaO NPs reduces the amount of cellular damage caused by CdCl2 stress and improves gene expressions.
Vector-borne diseases pose a significant public health challenge in economically disadvantaged nations. Malaria, dengue fever, chikungunya, Zika, yellow fever, Japanese encephalitis, and lymphatic filariasis are spread by mosquitoes. Consequently, the most effective method of preventing these diseases is to eliminate the mosquito population. Historically, the majority of control programs have depended on chemical pesticides, including organochlorines, organophosphates, carbamates, and pyrethroids. Synthetic insecticides used to eradicate pests have the potential to contaminate groundwater, surface water, beneficial soil organisms, and non-target species. Nanotechnology is an innovative technology that has the potential to be used in insect control with great precision. The goal of this study was to test the in vitro anti-dengue potential and mosquitocidal activity of Chaetomorpha aerea and C. aerea-synthesized Mn-doped superparamagnetic iron oxide nanoparticles (CA-Mn-SPIONs). The synthesis of CA-Mn-SPIONs using C. aerea extract was verified by the observable alteration in the colour of the reaction mixture, transitioning from a pale green colour to a brown. The study of UV-Vis spectra revealed absorbance peaks at approximately 290 nm, which can be attributed to the surface Plasmon resonance of the CA-Mn-SPIONs. The SEM, TEM, EDX, FTIR, vibrating sample magnetometry, and XRD analyses provided evidence that confirmed the presence of CA-Mn-SPIONs. In the present study, results revealed that C. aerea aqueous extract LC50 values against Ae. aegypti ranged from 222.942 (first instar larvae) to 349.877 ppm in bioassays (pupae). CA-Mn-SPIONs had LC50 ranging from 20.199 (first instar larvae) to 26.918 ppm (pupae). After treatment with 40 ppm CA-Mn-SPIONs and 500 ppm C. aerea extract in ovicidal tests, egg hatchability was lowered by 100%. Oviposition deterrence experiments showed that in Ae. aegypti, oviposition rates were lowered by more than 66% by 100 ppm of green algal extract and by more than 71% by 10 ppm of CA-Mn-SPIONs (oviposition activity index values were 0.50 and 0.55, respectively). Moreover, in vitro anti-dengue activity of CA-Mn-SPIONs has good anti-viral property against dengue viral cell lines. In addition, GC-MS analysis showed that 21 intriguing chemicals were discovered. Two significant phytoconstituents in the methanol extract of C. aerea include butanoic acid and palmitic acid. These two substances were examined using an in silico methodology against the NS5 methyltransferase protein and demonstrated good glide scores and binding affinities. Finally, we looked into the morphological damage and fluorescent emission of third instar Ae. aegypti larvae treated with CA-Mn-SPIONs. Fluorescent emission is consistent with ROS formation of CA-Mn-SPIONs against Ae. aegypti larvae. The present study determines that the key variables for the successful development of new insecticidal agents are rooted in the eco-compatibility and the provision of alternative tool for the pesticide manufacturing sector.