共检索到 4

The paper presents the strategic project of Tomsk State University devoted to studying the carbon cycle in the arctic land-shelf system. The obtained carbon cycle characteristics should be used for global climate model correction. The main objective of the consortium is to obtain new data on the variability of climatic and biological factors of various ecosystems, monitor them, and create archives of data on their dynamics. The area of the project includes the basins of the Great Siberian Rivers, and the shelf of the adjacent Arctic seas. A consortium of approximately twenty universities and research institutions was formed to study the carbon cycle in various environments, including seas, rivers, wetlands, and permafrost. In addition to studying the carbon cycle, the project also aims to develop methods for carbon sequestration and ecosystems remediation. One of such methods was developed for the assessment and cleanup of bottom sediments from oil and petroleum products as well as other hydrophobic contaminants and has been patented and tested in a series of field trials. Several special monitoring methods are described, such as novel sampling and sample laboratory processing techniques to assess microplastics in the environment; and holographic methods for underwater monitoring of the plankton behavior for early bioindication of hazards in the water area. This is particularly relevant for areas with dangerous objects, such as nuclear power plants, oil platforms, and gas pipelines. The methods of math modeling of the impact of climate change and anthropogenic factors on indigenous and local population lives were used.

期刊论文 2025-05-12 DOI: 10.1007/s13762-025-06544-9 ISSN: 1735-1472

Through advancements in technology humans have cultivated more food, used more fossil fuel reserves, polluted the environment, and caused climate change. This was not the case some few decades ago where indigenous technologies were used in exploiting natural resources. Unfortunately, the effects of climate change on the planet are no more distant reality. The melting of glaciers, rising sea levels, extreme rainfall, and prolonged drought are already being experienced. These have affected water resources, land, and food security across the world. The limits of conventional climate change adaptation and mitigation strategies call for the integration of indigenous knowledge and technologies for tackling climate change issues. This is because of the importance that indigenous knowledge and technologies have for identifying the impacts and as well providing effective adaption and mitigation strategies to climate change. Thus, this chapter explores the potential of indigenous knowledge and technologies for the sustainable management of water, land, and food security amidst climate change. The applications of indigenous technologies and knowledge such as agroforestry, the use of sacred groves to conserve water, land, and biodiversity resources, and the practising of conservation-agriculture are discussed as solutions for reducing greenhouse gas emissions, water shortages, land degradation, and pollution. However, these indigenous technologies will be less useful in today's world if not harnessed. Thus also in this chapter, the scientific know-how available to improve the effectiveness of indigenous technologies for the sustainable use of water, land, and food resources have been identified (Robotics, sensors/detectors, internet of things) and discussed.

期刊论文 2021-08-12 DOI: 10.3389/fsufs.2021.691603

Snow cover plays a major role in the climate, hydrological and ecological systems of the Arctic and other regions through its influence on the surface energy balance (e.g. reflectivity), water balance (e.g. water storage and release), thermal regimes (e.g. insulation), vegetation and trace gas fluxes. Feedbacks to the climate system have global consequences. The livelihoods and well-being of Arctic residents and many services for the wider population depend on snow conditions so changes have important consequences. Already, changing snow conditions, particularly reduced summer soil moisture, winter thaw events and rain-on-snow conditions have negatively affected commercial forestry, reindeer herding, some wild animal populations and vegetation. Reductions in snow cover are also adversely impacting indigenous peoples' access to traditional foods with negative impacts on human health and well-being. However, there are likely to be some benefits from a changing Arctic snow regime such as more even run-off from melting snow that favours hydropower operations.

期刊论文 2011-12-01 DOI: 10.1007/s13280-011-0213-x ISSN: 0044-7447

The Canadian Arctic is characterized by a high variation in landform types and there are complex interactions between land, water and the atmosphere which dramatically affect the distribution of biota. Biodiversity depends upon the intensity, predictability and scale of these interactions. Observations, as well as predictions of large-scale climate models which include ocean circulation, reveal an anomalous cooling of northeastern Canada in recent decades, in contrast to the overall significant increase in average annual temperature in the Northern Hemisphere. Predictions from models are necessary to forecast the change in the treeline in the 21st century which may lead to a major loss of tundra. The rate of change in vegetation in response to climate change is poorly understood. The treeline in central Canada, for example, is showing infilling with trees, and in some locations, northerly movement of the boundary. The presence of sea ice in Hudson Bay and other coastal areas is a major factor affecting interactions between the marine and terrestrial ecosystems. Loss of ice and therefore hunting of seals by polar bears will reduce bear and arctic fox populations within the region. in turn, this is likely to have significant effects on their herbivorous prey populations and forage plants, Further, the undersurface of sea ice is a major site for the growth of algae and marine invertebrates which in turn act as food for the marine food web. A rise in sea-level may flood coastal saltmarsh communities leading to changes in plant assemblages and a decline in foraging by geese and other consumers. The anomalous cooling in the eastern Arctic, primarily in late winter and early spring, has interrupted northern migration of breeding populations of geese and ducks and led to increased damage to vegetation in southern arctic saltmarshes as a result of foraging. It is likely that there has been a significant loss of invertebrates in those areas where the vegetation has been destroyed, Warming will have major effects on permafrost distribution and on ground-ice resulting in a major destabilization of slopes and slumping of soil, and disruption of tundra plant communities. Disruption of peat and moss surfaces lead to loss of insulation, an increase in active-layer depth and changes in drainage and plant assemblages. Increases of UV-B radiation will strongly affect vulnerable populations of both plants and animals, The indigenous peoples will face major changes in life style, edibility of food and health standards, if there is a significant warming trend. The great need is for information which is sensitive to the changes and will assist in developing an understanding of the complex interactions of the arctic biota, human populations and the physical environment.

期刊论文 1998-01-01 DOI: 10.1023/A:1005807212017 ISSN: 0167-6369
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页