Cherry blossom crown gall has caused serious damage to plant growth, and is highly contagious and extremely difficult to control. The antagonism of pathogens by rhizosphere bacteria has attracted widespread attention. However, there is still limited research on the cherry blossom crown gall. In this study, we explored the control effect of rhizosphere bacteria Pseudomonas aurantiaca ST-TJ4 on cherry blossom crown gall. We also investigated the long-term survival status of ST-TJ4 in the cherry blossom roots and the induction of plant defense resistance. The results showed that ST-TJ4 had obvious inhibition effect on the population of Agrobacterium tumefaciens, which could reduce the number of A. tumefaciens by 70% to 90%, and its population kept the advantage in the rhizosphere soil and cherry blossom roots. The incidence of crown gall in the therapy group and the prevention group was reduced by 37.5% and 50%, respectively, and the disease index was reduced from 80 to 20 and 10, respectively. At the 150th day, ST-TJ4 could still be isolated from the rhizosphere soil and root surface, indicating that ST-TJ4 could survive in soil for a long time and had long-term performance. Compared with the control group, the therapy group and prevention group could reduce the levels of H2O2, malondialdehyde (MDA) and the oxidative damage, and up-regulated the expression of active oxygen-related genes DHAR1, SOD1, GR1 and CAT to activate defense response. On the other hand, it could up-regulate the expression of SA1, SA2 and JA1 genes related to the induction of salicylic acid (SA) and jasmonic acid (JA), and lead to the increase of SA hormone level. Collectively, P. aurantiaca ST-TJ4 had the potential to be applied for biocontrol of cherry blossom crown gall by reducing root pathogen colonization and inducing plant resistance.
BACKGROUND Meloidogyne incognita is a highly damaging pathogenic nematode that causes significant annual economic losses. Therefore, the development of reliable biological control agents against M. incognita is imperative. The Bacillus velezensis RKN1111 strain, isolated from inter-root soil, demonstrates the ability to directly kill M. incognita. In this study, we investigated the effect of RKN1111 in inducing resistance to M. incognita in Cucumis sativus and examined changes in the content of immune-responsive substances in the induction-treated cucumber plants. RESULT The RKN1111 treatment reduced the number of root galls in infected cucumbers, with a maximum reduction of 78.19%. RKN1111 stably colonized cucumber roots, reaching 3.65 x 106 CFU/g in 3 days. The approach and infestation rates of M. incognita on RKN1111-induced treated cucumber root tips declined at varying time points. Furthermore, RKN1111 induced significant increases (P < 0.05) in hydrogen peroxide (H2O2) and superoxide anion (O2-) contents, as well as in the callose deposition area in cucumber, by up to 59.84, 83.28, and 61.59%, respectively. CONCLUSION RKN1111 has been demonstrated to stably colonize cucumber root systems and defend against M. incognita infestation by inducing systemic resistance in the host plant. Additionally, RKN1111 elevated the levels of immune-responsive substances in cucumber plants. RKN1111 has great potential for application in the integrated pest management of M. incognita. (c) 2025 Society of Chemical Industry.
Under natural conditions, crops typically suffer from severe challenges due to the increasing of abiotic and biotic stresses which severely affect plant growth and reduc crop yield. The present study investigated the single and combined impacts of Sclerotinia sclerotiorum and salinity stress on common bean (Phaseolus vulgaris L.) seedling which is scarcely studied. The study evaluated the in vitro and in vivo influence of two salinity tolerant Trichoderma isolates, T. koningii and T. harzianum against S. sclerotiorum under salinity stress. The results showed the ability of T. koningii and T. harzianum to grow and sporulate at high levels of salinity, 80 mM NaCl, without significantly impacting their ability to produce cell wall degrading enzymes, cellulase and chitinase. Amylase and proteinase (Prb1) genes were detected in T. harzianum. The in vitro assay revealed that both isolates could inhibit the growth of S. sclerotiorum under high salinity concentrations. In a greenhouse experiment, both Trichoderma isolates ameliorated the damaging impacts of S. sclerotiorum under salinity stress on common bean seedlings' germination and growth characteristics compared to their untreated control. Both bioagents significantly attenuated the damping-off and collar/stem rot percentages of infected common bean under salinity stress. Salinity stress intensified the effect of S. sclerotiorum on photosynthetic pigments, induced oxidative and nitrative stress, hampered ionic homeostasis, and deactivated antioxidants and defense-related molecules. On the other hand, Trichoderma isolates restrained the reduction of chlorophylls and carotenoids, ascorbate, reduced glutathione, flavonoids, phenolics, and various antioxidant enzymes, especially for single stresses and T. harzianum. All these upregulations reflected in keeping the cell membranes of common beans seedling more stable where the levels of lipid peroxidation and methylglyoxal due to the reduction of reactive oxygen species and upregulation of nitric oxide, which expressed better growth under pathogen attack or/and saline. The tested isolates, T. koningii and T. harzianum could be used as effective biological control against S. sclerotiorum on common beans in saline soils or areas irrigated with saline water.
The European Green Deal aims to reduce the pesticide use, notably by developing biocontrol products to protect crops from diseases. Indeed, the use of significant amounts of chemicals negatively impact the environment such as soil microbial biodiversity or groundwater quality, and human health. Grapevine (Vitis vinifera) was selected as one of the first targeted crop due to its economic importance and its dependence on fungicides to control the main damaging diseases worldwide: grey mold, downy and powdery mildews. Chitosan, a biopolymer extracted from crustacean exoskeletons, has been used as a biocontrol agent in many plant species, including grapevine, against a variety of cryptogamic diseases such as downy mildew (Plasmopara viticola), powdery mildew (Erysiphe necator) and grey mold (Botrytis cinerea). However, the precise molecular mechanisms underlying its mode of action remain unclear: is it a direct biopesticide effect or an indirect elicitation activity, or both? In this study, we investigated six chitosans with diverse degrees of polymerization (DP) ranging from low to high DP (12, 25, 33, 44, 100, and 470). We scrutinized their biological activities by evaluating both their antifungal properties and their abilities to induce grapevine immune responses. To investigate their elicitor activity, we analyzed their ability to induce MAPKs phosphorylation, the activation of defense genes and metabolite changes in grapevine. Our results indicate that the chitosans with a low DP are more effective in inducing grapevine defenses and possess the strongest biopesticide effect against B. cinerea and P. viticola. We identified chitosan with DP12 as the most efficient resistance inducer. Then, chitosan DP12 has been tested against downy and powdery mildews in the vineyard trials performed during the last three years. Results obtained indicated that a chitosan-based biocontrol product could be sufficiently efficient when the amount of pathogen inoculum is quite low and could be combined with only two fungicide treatments during whole season programs to obtain a good protection efficiency. On the whole, a chitosan-based biocontrol product could become an interesting alternative to meet the chemicals reduction targeted in sustainable viticulture.