Seasonally frozen ground (SFG) is a significant component of the cryosphere, and its extent is gradually increasing due to climate change. The hydrological influence of SFG is complex and varies under different climatic and physiographic conditions. The summer rainfall dominant climate pattern in Qinghai Lake Basin (QLB) leads to a significantly different seasonal freeze-thaw process and groundwater flow compared to regions with winter snowfall dominated precipitation. The seasonal hydrological processes in QLB are not fully understood due to the lack of soil temperature and groundwater observation data. A coupled surface and subsurface thermal hydrology model was applied to simulate the freeze-thaw process of SFG and groundwater flow in the QLB. The results indicate that SFG begins to freeze in early November, reaches a maximum freezing depth of approximately 2 meters in late March, and thaws completely by June. This freeze-thaw process is primarily governed by the daily air temperature variations. During the early rainy season from April to June, the remaining SFG in deep soil hinders the majority of rainwater infiltration, resulting in a two-month delay in the peak of groundwater discharge compared to scenario with no SFG present. Colder conditions intensify this effect, delaying peak discharge by 3 months, whereas warmer conditions reduce the lag to 1 month. The ice saturation distribution along the hillslope is affected by topography, with a 10 cm deeper ice saturation distribution and 3 days delay of groundwater discharge in the steep case compared to the flat case. These findings highlight the importance of the freeze-thaw process of SFG on hydrological processes in regions dominated by summer rainfall, providing valuable insights into the hydro-ecological response. Enhanced understanding of these dynamics may improve water resource management strategies and support future research into climate-hydrology interactions in SFG-dominated landscapes.
To explore the effects of mattic epipedon (ME) on soil moisture and hydraulic properties in the alpine meadow of three-river source region, the soil moisture, water infiltration, evapotranspiration, soil bulk density and soil water holding capacity of original vegetation (OV), light degradation (LD), moderate degradation (MD) and severe degradation (SD) was conducted in this study, respectively. The results showed that: (1) the alpine meadow degradation reduced the soil moisture in the shallow layer (0-10 cm) and had no significant effects on the soil moisture in the deep layer (20-30 cm). (2) The effects of alpine meadow degradation on infiltration was depend on the presence of ME or not, when the ME existed on the land surface (from OV treatment to MD treatment), the alpine meadow degradation had no significant effects on infiltration. Once the ME disappeared on the land surface (from MD treatment to SD treatment), the alpine meadow degradation mainly increased the infiltration. (3) With the aggravation of alpine meadow degradation, the daily evapotranspiration first decreased and then significantly increased when the gravimetric soil water content at 0-5 cm in SD treatment (GWC5) was exceeded 19.5%, the daily evapotranspiration gradually decreased when GWC5 ranged from 9.3% to 19.5%, and had no significant changes on the evapotranspiration when GWC5 was less than 9.3%. Considering the characteristics of precipitation in alpine meadow, it was concluded that the alpine meadow degradation accelerated the evapotranspiration during the plant-growing season. (4) The effect of alpine meadow degradation on soil bulk density and saturated water capacity was concentrated at 0-10 cm. With the aggravation of alpine meadow degradation, the bulk density at 0-10 cm was first stable and then significantly increased and the saturated water capacity at 0-10 cm was first gradually increased and then significantly decreased. Our results suggested that the ME is vital for water conservation of alpine meadow and the protection of ME should be emphasized to promote the sustainable development of the ecosystem and the water supply of water towers in China.
Under the condition of warming and wetting trend on Qinghai-Tibet Plateau due to climate change, summer rainfall infiltration alters the change of the hydrothermal state and may impact the cooling performance of crushed-rock interlayer embankment. Herein, two experimental models with the 1.4-m-thickness (M1) and 0.6m-thickness (M2) crushed-rock layer (CRL) were conducted in an environmental simulator experiencing the freezing and thawing cycles. The hydrothermal response to rainfall events was investigated and quantified by analyzing the variations of measured soil temperatures, volumetric water contents, and heat fluxes. Thermal observations show that rainfall infiltration caused heat advection and resulted in step change of soil temperature at depth. Rainfall infiltration reduced the surface temperature of the CRL, but warmed the soil layer at depth by up to 2.13 degrees C. The average temperature of the base soil layer under the action of concentrated rainfall basically showed an increasing trend. In particular, the CRL with a smaller thickness (M2) had a more significant thermal response to rainfall event. In addition, the moisture pulse, experiencing a step increase and following a gradual decrease caused by rainfall water infiltration, appeared several hours earlier than the temperature pulse. Moreover, infiltrated water produced an additional energy to warm the soil at depth, with maximum heat flux of 12.13 W/m2 and 79.90 W/m2 for the M1 and M2, respectively. The infiltrated water accumulated at the top of base soil significantly delayed the refreezing processes in cold period due to the latent heat effect. The net founding of this study provide an insight into improving the design crushed-rock embankment in permafrost regions.
Climate change effects, such as melting of glaciers and sea ice in response to rising temperatures, may lead to an increase in global water availability and thus in precipitation. In Central Yakutia, as one of the possible options for climate change, an increase in rainfall is possible, which makes up more than 60% of the annual precipitation. Rainfall is a highly variable meteorological parameter both spatially and temporally. In order to assess its effect on the ground temperature regime in Central Yakutia, we conducted manipulation and numerical experiments with increased rainfall. The manipulation experiment results suggest that a significant (three-fold) increase in rainfall can lower the mean annual ground temperatures locally. The long-term simulation predicts that a 50% increase in rainfall would have a warming effect on the ground thermal regime on a regional scale. For Central Yakutia, infiltration of increased precipitation has been shown to have both warming and cooling effect depending on the area affected.
The influence of seasonally frozen ground (SFG) on water, energy, and solute fluxes is important in cold climate regions. The hydrological role of permafrost is now being actively researched, but the influence of SFG has received less attention. Intuitively, SFG restricts (snowmelt) infiltration, thereby enhancing surface runoff and decreasing soil water replenishment and groundwater recharge. However, the reported hydrological effects of SFG remain contradictory and appear to be highly site- and event-specific. There is a clear knowledge gap concerning under what physiographical and climate conditions SFG is more likely to influence hydrological fluxes. We addressed this knowledge gap by systematically reviewing published work examining the role of SFG in hydrological partitioning. We collected data on environmental variables influencing the SFG regime across different climates, land covers, and measurement scales, along with the main conclusion about the SFG influence on the studied hydrological flux. The compiled dataset allowed us to draw conclusions that extended beyond individual site investigations. Our key findings were: (a) an obvious hydrological influence of SFG at small-scale, but a more variable hydrological response with increasing scale of measurement, and (b) indication that cold climate with deep snow and forest land cover may be related to reduced importance of SFG in hydrological partitioning. It is thus increasingly important to understand the hydrological repercussions of SFG in a warming climate, where permafrost is transitioning to seasonally frozen conditions.
The climate change is significantly changing the hydro-thermal state of active layer at Qinghai-Tibet Plateau (QTP), which endangers permafrost environment. The degradation of permafrost would damage the linear engineering in cold regions; furthermore, the alternation of soil hydro-thermal state in the area of rugged terrain would lead to geo-hazards and then threaten the safety of local people. Global warming is widely accepted as a big threat to the ecological environment of arctic, subarctic and alpine regions, while the changing trend of precipitation around the world is still in dispute. Furthermore, the role of precipitation accompanied with global warming is unknown. Hence, in this study, the localized monitoring data from Beiluhe permafrost monitoring station at QTP, including atmospheric and soil hydro-thermal data, were utilized for further processing and comparative analysis. Firstly, the changing trend of precipitation here was investigated through the atmospheric data from 2003 to 2013. Thereafter, the hydro-thermal change of active layer was analyzed combined with precipitation events during this period. However, the raining pattern in QTP is characterized with continuity, short duration and small amount, basically referring to thawed season. The hydro-thermal change affected by corresponding raining event could be influenced by temporally nearby event in timescale. To differentiate the effect, the characteristic precipitation event (CPE) was selected through an elaborate algorithm. Subsequently, the hydro-thermal changes of active layer were reanalyzed in response to CPEs. Representative outcomes were chosen for the specific analysis under the influence from CPEs. Hence, under the circumstance of global warming, the effect from precipitation on the hydro-thermal properties of active layer was also obtained, and the possible harmful consequence induced by that was also discussed.
In this article, we consider the problem of thermal response of the near-surface ice-rich permafrost to the effects of linear infrastructure and current climate change. First, we emphasize the scientific and practical significance of the study and briefly describe permafrost conditions and related hazards in the study area. Then we present a mathematical model which accounts for the actual process of soil thawing and freezing and consists of two nonlinear equations: heat conduction and moisture transfer. Numerical calculations were made to predict temperature and moisture conditions in the railroad embankment, taking into account solar radiation, snow cover, rainfall infiltration, and evaporation from the surface. The numerical results indicate that moisture migration and infiltration play the primary role in the development of frost heaving and thaw settlement. During winter, the frost-heave extent is monotonously increased due to pore moisture migration to the freezing front. Strong volume expansion (dilatation) is observed near the surface of the active layer with the onset of the warm season and meltwater infiltration. Settlement of the upper layers of the soil occurs in the summer months (June-August) when there is intense evaporation due to drying. Autumn rains stop the process of thaw settlement by increasing the soil moisture. The above processes are repeated cyclically every year. A frozen core shifts to the shaded side of the embankment under the influence of variations in the solar radiation. Over time, the total moisture content of the frozen core is increased which increases differential heaving and negatively affects the stress-strain state in the embankment. The quantitative and qualitative characteristics of the processes of frost heaving and thaw settlement are obtained in the annual and long-term cycles.
Soil infiltration processes were evaluated under field conditions by double-ring infiltrometers with different underlying surfaces in permafrost regions of the Tibetan Plateau. The results show that initial infiltration rates, stable soil infiltration rates and cumulative soil infiltration are strongly dependent on the underlying surface types, with the highest initial and stable soil infiltration rates in the alpine desert steppe, and the lowest in alpine meadow. The effects of soil moisture and texture on infiltration processes were also assessed. Within the same underlying surfaces, the values of infiltration parameters increased with the amount of vegetation cover, while soil moisture and soil infiltration rates displayed opposing trends, with fitting slopes of -0.03 and -0.01 for the initial and stable soil infiltration rates, respectively. The accuracies of the five models in simulating soil infiltration rates and seven models in predicting cumulative infiltration rates were evaluated against data generated from field experiments at four sites. Based on a comparative analysis, the Horton model provided the most complete understanding of the underlying surface effects on soil infiltration processes. Altogether, these findings show that different underlying surfaces can alter soil infiltration processes. This study provides a useful reference for understanding the parameterization of land surface processes for simulating changes in hydrological processes under global warming conditions in the permafrost region on the Tibetan Plateau.
Changes in the hydrological processes in alpine soil constitute one of the several key problems encountered with studying watershed hydrology and ecosystem stability against the background of global warming. A typically developing thermokarst lake was chosen as a subject for a study using model simulation based on observations of soil physical properties, infiltration processes, and soil moisture. The results showed that the selected thermokarst lake imposed certain changes on the soil infiltration processes and, with the degree of impact intensifying, the initial infiltration rate decreased. The greatest reduction was achieved in the area of moderate impact. However, the stable infiltration rate and cumulative infiltration gradually increased in the surface layer at a depth of 10 and 20 cm, both decreasing initially and then increasing, which is correlated significantly with soil textures. Moreover, the cumulative infiltration changed in line with steady infiltration rate. Based on a comparative analysis, the Horton model helps better understand the effect on the soil infiltration processes of the cold alpine meadow close to the chosen thermokarst lake. In conclusion, the formation of the thermokarst lake reduced the water holding capacity of the alpine meadow soil and caused the hydraulic conductivity to increase, resulting in the reduction of runoff capacity in the area of the thermokarst lake.
Future changes of pan-Arctic land-atmospheric methane (CH4) and carbon dioxide (CO2) depend on how terrestrial ecosystems respond to warming climate. Here, we used a coupled hydrology-biogeochemistry model to make our estimates of these carbon exchanges with two contrasting climate change scenarios (no-policy versus policy) over the 21st century, by considering (1) a detailed water table dynamics and (2) a permafrost-thawing effect. Our simulations indicate that, under present climate conditions, pan-Arctic terrestrial ecosystems act as a net greenhouse gas (GHG) sink of -0.2 Pg CO2-eq.yr(-1), as a result of a CH4 source (53 Tg CH4 yr(-1)) and a CO2 sink (-0.4 Pg C yr(-1)). In response to warming climate, both CH4 emissions and CO2 uptakes are projected to increase over the century, but the increasing rates largely depend on the climate change scenario. Under the non-policy scenario, the CH4 source and CO2 sink are projected to increase by 60% and 75% by 2100, respectively, while the GHG sink does not show a significant trend. Thawing permafrost has a small effect on GHG sink under the policy scenario; however, under the no-policy scenario, about two thirds of the accumulated GHG sink over the 21st century has been offset by the carbon losses as CH4 and CO2 from thawing permafrost. Over the century, nearly all CO2-induced GHG sink through photosynthesis has been undone by CH4-induced GHG source. This study indicates that increasing active layer depth significantly affects soil carbon decomposition in response to future climate change. The methane emissions considering more detailed water table dynamics continuously play an important role in affecting regional radiative forcing in the pan-Arctic.