共检索到 2

This study assesses the vulnerability of Arctic coastal settlements and infrastructure to coastal erosion, Sea-Level Rise (SLR) and permafrost warming. For the first time, we characterize coastline retreat consistently along permafrost coastal settlements at the regional scale for the Northern Hemisphere. We provide a new method to automatically derive long-term coastline change rates for permafrost coasts. In addition, we identify the total number of coastal settlements and associated infrastructure that could be threatened by marine and terrestrial changes using remote sensing techniques. We extended the Arctic Coastal Infrastructure data set (SACHI) to include road types, airstrips, and artificial water reservoirs. The analysis of coastline, Ground Temperature (GT) and Active Layer Thickness (ALT) changes from 2000 to 2020, in addition with SLR projection, allowed to identify exposed settlements and infrastructure for 2030, 2050, and 2100. We validated the SACHI-v2, GT and ALT data sets through comparisons with in-situ data. 60% of the detected infrastructure is built on low-lying coast (< 10 m a.s.l). The results show that in 2100, 45% of all coastal settlements will be affected by SLR and 21% by coastal erosion. On average, coastal permafrost GT is increasing by 0.8 degrees C per decade, and ALT is increasing by 6 cm per decade. In 2100, GT will become positive at 77% of the built infrastructure area. Our results highlight the circumpolar and international amplitude of the problem and emphasize the need for immediate adaptation measures to current and future environmental changes to counteract a deterioration of living conditions and ensure infrastructure sustainability.

2024-12-01 Web of Science

The past four decades have seen extensive development of the winter sport industry in the French Alps and several hundred ropeway transport systems have been installed in areas where mountain permafrost may be present. Due to current climatic change and the ensuing permafrost degradation, the vulnerability of these infrastructures to destabilization may increase. Therefore, there is a real potential for instabilities to develop on ropeway transport systems in the Alps, requiring a better understanding of these processes. This study investigates the relation between permafrost and infrastructure stability in the French Alps, seeking to understand the evolution of this phenomenon over the past decades. This was done by following a two-step analysis. At first, the infrastructure elements built on modeled permafrost-affected areas were inventoried at the scale of the French Alps in order to get an overview of the possible vulnerabilities. Then, our study presents a detailed historical inventory of damage to infrastructure over the past three decades in different geomorphologic contexts. Overall, in the French Alps, there are almost 1000 infrastructure elements located in permafrost areas among which 12 (i.e., 24 infrastructure elements) were identified to have been subject to repeated instances of disruption and deterioration and most of the damages recorded were in areas where permafrost degradation is fully expected (ice-rich terrain). Infrastructure recovery costs may be significantly high, making this issue a relevant consideration to be included in the design process.

2019-06-01 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页