Corn rootworms (CRW) are among the most destructive pests in corn production across the Corn Belt, causing considerable damage through larval feeding on roots. While crop rotation and Bt technologies are widely adopted management strategies, their effectiveness is increasingly compromised by the pest's evolution of resistance and behavioral adaptability. Chemical insecticides applied at planting to target larvae directly serve as an additional tool for corn rootworm control. In this study, we evaluated the performance of various insecticides, applied in-furrow, for managing corn rootworms by assessing Node Injury Scale (NIS), lodging rates, and grain yields from 2020 to 2024. We found that Mode of Action (MOA) 3A insecticides (sodium channel modulators), such as Force Evo (tefluthrin) and Capture LFR (bifenthrin), did not provide substantial efficacy in reducing NIS and lodging rates. In contrast, MOA 1B+3A insecticides (acetylcholinesterase (AChE) inhibitors + sodium channel modulators), such as INDEX (chlorethoxyfos + bifenthrin) and AZTEC HC (tebupirimphos + cyfluthrin), significantly reduced CRW larval damage, particularly under high pest pressure in 2020, 2021 and 2023. Differences in insecticide concentrations did not significantly impact larval control efficacy. Additionally, seasonal rainfall during larval hatching and variation in cumulative corn growing degree days (GDD) strongly influenced the root injury and lodging outcomes. Lower GDD likely limits root regeneration, increasing lodging risk under CRW pressure. These findings demonstrate the values of in-furrow insecticides in managing corn rootworms, particularly under high pest pressure and provide valuable insights for developing integrated pest management strategies to sustain effective CRW larval control and improve crop productivity.
Black truffle, Tuber melanosporum Vittad., production is increasing due to an improvement in cultivation management and to the demand for this highly appreciated fungus. However, this intensification of truffle cultivation has led to the appearance of problems related to pest incidence. Specifically, the truffle beetle, Leiodes cinnamomeus (Panzer, 1793) (Coleoptera: Leiodidae), causes significant losses in black truffle marketability. However, its biology is still poorly known, and no effective agro-ecological methods exist to mitigate its damage to the truffles. This study aimed at assessing the population dynamics of L. cinnamomeus over four seasons (2019-2023) in an orchard located in NE Spain and relating these dynamics to weather variables and damage to truffle fruit bodies. Moreover, we described the diversity of arthropods captured in the traps in search of potential natural enemies of this beetle. The maximum population peak was observed in November, except for a single season in which it occurred in December. Moreover, the sex ratio was balanced (0.54 on average), but it varied over the growing season and among years. Significant and positive relationships of the population density of truffle beetles with air temperature and relative humidity were observed. The number of beetles per trap and day was strongly linked to heat accumulation. Finally, the Carabid Percus (Pseudopercus) patruelis (L. Daufour, 1820) was identified as a natural enemy of L. cinnamomeus. These results could be used in the future for monitoring and predicting truffle beetle populations.
The hazelnut weevil larvae (Curculio dieckmanni) is a major pest of nut weevils, spending part of its life cycle in the soil and causing significant damage to hazelnut crops. Moreover, its concealed feeding behavior complicates effective control with chemical insecticides. The entomopathogenic nematode Steinernema carpocapsae, which efficiently kills weevil larvae, offers a promising biological control agent. To investigate the molecular responses of hazelnut weevil larvae to nematode infection, we employed integrated transcriptomic and proteomic analyses following infection by S. carpocapsae. Our results revealed substantial alterations in gene expression, particularly the upregulation of immune-related transcripts such as antimicrobial peptides (AMPs) and stress-responsive proteins like heat shock protein 70 (HSP70). Furthermore, significant metabolic reprogramming occurred, marked by the downregulation of carbohydrate metabolic pathways and activation of energy conservation mechanisms. Although we observed an overall correlation between mRNA and protein expression levels, notable discrepancies highlighted the critical roles of post-transcriptional and post-translational regulatory processes. Collectively, these findings advance our understanding of the molecular interaction between insect hosts and pathogenic nematodes and contribute valuable knowledge for enhancing the effectiveness of EPN-based pest management strategies.
To identify the species of Collembola that harm Morchella and to screen for pesticides that are effective in controlling these pests with minimal inhibition of mycelial growth, a five-point sampling method was used to investigate the population of Collembola and its damaging effects on Morchella and to analyze its spatial distribution in the soil. The indoor control efficacy of ten insecticides was determined using the mushroom disc immersion method and the pesticide film method. The most effective insecticides were then selected for field testing. The effect of the best-performing field pesticides on the mycelial growth of Morchella was measured using the Petri dish mycelial growth rate method, and pesticide residues were detected using chromatography. The survey revealed that in three Morchella greenhouses, the average Collembola population was 220,333 individuals/m3. The spatial distribution of Collembola was uniform. The collected Collembola specimens were identified as Oligaphorura ursi from the family Onychiuridae. Through the lab and field screening of pesticides, it was found that 40% phoxim EC, 1.8% abamectin EC, 2.5% lambda-cyhalothrin EW, and 4.5% beta-cypermethrin EC had the best efficacy. Meanwhile, residues of these four pesticides were not detected. Mycelial growth inhibition experiments showed that 2.5% lambda-cyhalothrin EW, 1.8% abamectin EC, and 4.5% beta-cypermethrin EC exhibit low inhibition of mycelial growth and can be used as control pesticides for Collembola on Morchella, providing a technical reference for the green pesticide control of Collembola on Morchella in the study region.
Metal-based nanoparticles (MNPs) are gaining attention as promising components of nanopesticides, offering innovative solutions to enhance agricultural pest management while addressing environmental concerns associated with traditional pesticides. MNPs, such as silver, copper, zinc, nickel, gold, iron, aluminum, and titanium, exhibit unique nanoscale properties. These properties enable the formulation of MNPs for controlled and sustained release, thereby reducing application frequency and minimizing environmental runoff. This controlled release mechanism not only improves pest management efficacy but also reduces risks to non-target organisms and beneficial species, aligning with the principles of sustainable crop protection. This review examines nanopesticides based on their specific targets, such as nanoinsecticide, nanobactericide, nanofungicide, nanonematicide, and nanoviricide. It also explores the mechanisms of action of metal-based nanoparticles, including physical disruption, chemical interactions, and biological processes. Additionally, the review details how MNPs compromise cellular integrity through mechanisms such as membrane damage, DNA disruption, mitochondrial impairment, and protein denaturation. Despite these advantages, significant challenges remain, particularly concerning the environmental impact of MNPs, their long-term effects on soil health and ecosystem dynamics, and potential risks to human safety. Addressing these challenges is crucial for realizing the full potential of MNPs in sustainable agriculture.
Chlorpyrifos (CHP) contamination affects agricultural land and poses significant risks to plants and humans. Chitosan-oligosaccharide (COS) enhances plant resilience under stress and boosts the activity of enzymes metabolizing exogenous substances. This study aimed to explore the potential and mechanism of COS in mitigating CHP phytotoxicity and reducing CHP accumulation through both pot and field experiments. The results indicated that CHP exposure caused oxidative stress and decreased photosynthesis by 18.5 % in wheat. COS up-regulated the expression of antioxidant enzyme genes in CHP-stressed plants, resulting in a 12.1 %-29.4 % increase in antioxidant enzyme activity, which resulted in an 11.3 %-12.8 % reduction in reactive oxygen species (ROS) and an 11.5 %-14.7 % reduction in malondialdehyde (MDA) content in leaves and roots, respectively. Additionally, COS increased chlorophyll content by 6.6 % by regulating genes related to chlorophyll metabolism, enhancing photosynthesis by 13.6 %. COS also reduced CHP uptake and accelerated its metabolism by upregulating CYP450, GST, and lignin biosynthesis-related genes. Wheat treated with COS exhibited a 26.7 %-28.7 % reduction in grains' CHP content, resulting in a lower health risk index (HRI). These findings provide novel insights into the potential of COS in alleviating CHP phytotoxicity and reducing its accumulation.
Although the present use of pesticides in plant protection has limited the occurrence and development of plant diseases and pests, resistance to pesticides and their environmental and health hazards indicates an urgent need for new active ingredients in plant protection products. Recently synthesized coumarin-1,2,4-triazole hybrid compounds have been proven effective against plant pathogenic fungi and safe for soil-beneficial bacteria. Drosophila melanogaster, the common fruit fly, has been used as a model organism for scientific research. Additionally, it is considered a pest since it damages fruits and serves as a carrier for various plant diseases. On the contrary, Orius laevigatus is a beneficial true bug that biologically controls harmful arthropods in agricultural production. In the present study, we performed an adulticidal bioassay against D. melanogaster and O. laevigatus using coumarin-1,2,4-triazole hybrids. Quantitative structure-activity relationship studies (QSARs) and in silico ecotoxicity evaluation elucidated the structural features underlying the compounds' insecticidal activity. The derivative of 4-methylcoumarin-1,2,4-triazole with a 3-bromophenyl group showed great insecticidal potential. A molecular docking study indicated that the most active compound probably binds to glutamate-gated chloride channels.
Certain entomopathogenic fungi, such as Beauveria bassiana, are highly pathogenic to arthropod pests and are able to colonize plant tissues, thereby enhancing both plant growth and disease resistance. This study assessed three B. bassiana strains (CBM1, CBM2, and CBM3) for their pathogenicity toward insect larvae and colonization potential in wheat. The insecticidal activity of the fungi against the larvae of the major lepidopteran pests Helicoverpa armigera, Spodoptera frugiperda, Mythimna separata, and Plutella xylostella was determined. The fungi were then applied to wheat plants using seed immersion and soil drench methods; their colonization rates were compared, and the impacts of fungal colonization on wheat growth and survival were evaluated. The results demonstrated that all three strains were effective in reducing insect damage, with B. bassiana CBM1 exhibiting the highest pathogenicity followed by CBM3 and CBM2. B. bassiana CBM1 was particularly effective, with a significantly higher colonization rate achieved through soil drenching compared to seed immersion. The soil inoculation of B. bassiana resulted in increased plant height at 30 days after sowing (DAS) and root length at 15 DAS compared to the control group. B. bassiana CBM1-colonized wheat increased the mortality of fall armyworm. This research has enriched the biological control microbial resource pool and highlights the potential of B. bassiana in integrated pest management strategies.
Plants can sustain various degrees of damage or compensate for tissue loss by regrowth without significant fitness costs. This tolerance to insect herbivory depends on the plant's developmental stage during which the damage is inflicted and on how much tissue is removed. Plant fitness correlates, that is, biomass and germination of seeds, were determined at different ontogenetic stages, vegetative, budding, or flowering stages of three annual brassicaceous species exposed to feeding by Pieris brassicae caterpillars at different intensities. Fitness costs decreased with progressive ontogenetic stage at which damage was inflicted. Feeding on meristem tissues on vegetative and budding plants limited the plant's ability to fully compensate for tissue loss, whereas feeding on flowers resulted in full compensation or overcompensation in Sinapis arvensis and Brassica nigra. Herbivory promoted germination of seeds in the following year, thereby causing a shift in relative contribution to the next year's generation at the expense of contributing to the long-lived seed bank. Herbivory intensity affected fitness correlates of B. nigra and to a lesser extent of Sisymbrium officinale, but not of S. arvensis, demonstrating that even closely related plant species can differ in their specific responses to herbivory and that these can differently affect reproductive output. In terms of fitness costs, annual plant species can be quite resilient to herbivory. However, the extent to which they tolerate tissue loss depends on the ontogenetic stage that is under attack. Seed persistence in the soil has been proposed as a bet-hedging strategy of short-lived species to increase long-term fitness. Herbivore-induced changes in seed germination can result in a shift in the relative contribution of seeds to the seed bank and next year's generation.
Limited studies have highlighted the importance of incorporating behavioural assessments into insecticide efficacy evaluations for wireworm pest control. For this study, video tracking technology combined with a soil bioassay arena was employed to analyse the behaviour of Agriotes obscurus wireworms before, during, and after exposure to wheat seeds treated with the neonicotinoid insecticides thiamethoxam and imidacloprid at field-relevant concentrations. The analysis identified a set of behavioural key metrics for assessing the effects of these insecticides on wireworms. The results showed that these insecticides exhibited neutral attractancy towards wireworms. A brief period of feeding followed by rapid intoxication minimised damage to seeds. Furthermore, the wireworms demonstrated a specific form of behavioural resistance to neonicotinoids that did not rely on sensory input. In these insects, the rapid speed of intoxication, accompanied by drastic changes in behaviour, ensured that they received a sublethal rather than lethal dose of the insecticide. The wireworms fully recovered from all behavioural abnormalities within a week, and none died within 20 days following the exposure. In conclusion, this video tracking method provides a rapid and efficient means of assessing insecticides intended for wireworm management, offering valuable insights prior to more resource-intensive and costly field trials.