在列表中检索

共检索到 1

This research proposes an artificial intelligence (AI)-powered digital twin framework for highway slope stability risk monitoring and prediction. For highway slope stability, a digital twin replicates the geological and structural conditions of highway slopes while continuously integrating real-time monitoring data to refine and enhance slope modeling. The framework employs instance segmentation and a random forest model to identify embankments and slopes with high landslide susceptibility scores. Additionally, artificial neural network (ANN) models are trained on historical drilling data to predict 3D subsurface soil type point clouds and groundwater depth maps. The USCS soil classification-based machine learning model achieved an accuracy score of 0.8, calculated by dividing the number of correct soil class predictions by the total number of predictions. The groundwater depth regression model achieved an RMSE of 2.32. These predicted values are integrated as input parameters for seepage and slope stability analyses, ultimately calculating the factor of safety (FoS) under predicted rainfall infiltration scenarios. The proposed methodology automates the identification of embankments and slopes using sub-meter resolution Light Detection and Ranging (LiDAR)-derived digital elevation models (DEMs) and generates critical soil properties and pore water pressure data for slope stability analysis. This enables the provision of early warnings for potential slope failures, facilitating timely interventions and risk mitigation.

期刊论文 2025-03-12 DOI: 10.3390/geotechnics5010019
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页