Atmospheric Brown Carbon (BrC) with strong wavelength-dependence light-absorption ability can significantly affect radiative forcing. Highly resolved emission inventories with lower uncertainties are important premise and essential in scientifically evaluating impacts of emissions on air quality, human health and climate change. This study developed a bottom-up inventory of primary BrC from combustion sources in China from 1960 to 2016 with a spatial resolution at 0.1 degrees x 0.1 degrees, based on compiled emission factors and detailed activity data. The primary BrC emission in China was about 593 Gg (500-735 Gg as interquartile range) in 2016, contributing to 7% (5%-8%) of a previously estimated global total BrC emission. Residential fuel combustion was the largest source of primary BrC in China, with the contribution of 67% as the national average but ranging from 25% to 99% among different provincial regions. Significant spatial disparities were also observed in the relative shares of different fuel types. Coal combustion contribution varied from 8% to 99% across different regions. Heilongjiang and North China Plain had high emissions of primary BrC. Generally, on the national scale, spatial distribution of BrC emission density per area was aligned with the population distribution. Primary BrC emission from combustion sources in China have been declined since a peak of similar to 1300 Gg in 1980, but the temporal trends were distinct in different sectors. The high-resolution inventory developed here enables radiative forcing simulations in future atmospheric models so as to promote better understanding of carbonaceous aerosol impacts in the Earth's climate system and to develop strategies achieving co-benefits of human health protection and climate change.
Over the past decades, the cryosphere has changed significantly in High Mountain Asia (HMA), leading to multiple natural hazards such as rock-ice avalanches, glacier collapse, debris flows, landslides, and glacial lake outburst floods (GLOFs). Monitoring cryosphere change and evaluating its hydrological effects are essential for studying climate change, the hydrological cycle, water resource management, and natural disaster mitigation and prevention. However, knowledge gaps, data uncertainties, and other substantial challenges limit comprehensive research in climate-cryosphere-hydrology-hazard systems. To address this, we provide an up-to-date, comprehensive, multidisciplinary review of remote sensing techniques in cryosphere studies, demonstrating primary methodologies for delineating glaciers and measuring geodetic glacier mass balance change, glacier thickness, glacier motion or ice velocity, snow extent and water equivalent, frozen ground or frozen soil, lake ice, and glacier-related hazards. The principal results and data achievements are summarized, including URL links for available products and related data platforms. We then describe the main challenges for cryosphere monitoring using satellite-based datasets. Among these challenges, the most significant limitations in accurate data inversion from remotely sensed data are attributed to the high uncertainties and inconsistent estimations due to rough terrain, the various techniques employed, data variability across the same regions (e.g., glacier mass balance change, snow depth retrieval, and the active layer thickness of frozen ground), and poor-quality optical images due to cloudy weather. The paucity of ground observations and validations with few long-term, continuous datasets also limits the utilization of satellite-based cryosphere studies and large-scale hydrological models. Lastly, we address potential breakthroughs in future studies, i.e., (1) outlining debris-covered glacier margins explicitly involving glacier areas in rough mountain shadows, (2) developing highly accurate snow depth retrieval methods by establishing a microwave emission model of snowpack in mountainous regions, (3) advancing techniques for subsurface complex freeze-thaw process observations from space, (4) filling knowledge gaps on scattering mechanisms varying with surface features (e.g., lake ice thickness and varying snow features on lake ice), and (5) improving and cross-verifying the data retrieval accuracy by combining different remote sensing techniques and physical models using machine learning methods and assimilation of multiple high-temporal-resolution datasets from multiple platforms. This comprehensive, multidisciplinary review highlights cryospheric studies incorporating spaceborne observations and hydrological models from diversified techniques/methodologies (e.g., multi-spectral optical data with thermal bands, SAR, InSAR, passive microwave, and altimetry), providing a valuable reference for what scientists have achieved in cryosphere change research and its hydrological effects on the Third Pole.
Light-absorbing organic carbon (OC), sometimes known as Brown Carbon (BrC), has been recognized as an important fraction of carbonaceous aerosols substantially affecting radiative forcing. This study firstly developed a bottom-up estimate of global primary BrC, and discussed its spatiotemporal distribution and source contributions from 1960 to 2010. The global total primary BrC emission from both natural and anthropogenic sources in 2010 was 7.26 (5.98-8.93 as an interquartile range) Tg, with 43.5% from anthropogenic sources. High primary BrC emissions were in regions such as Africa, South America, South and East Asia with natural sources (wild fires and deforestation) contributing over 70% in the former two regions, while in East Asia, anthropogenic sources, especially residential solid fuel combustion, accounted for over 80% of the regional total BrC emissions. Globally, the historical trend was mainly driven by anthropogenic sources, which increased from 1960 to 1990 and then started to decline. Res-idential emissions significantly impacted on emissions and temporal trends that varied by region. In South and Southeast Asia, the emissions increased obviously due to population growth and a slow transition from solid fuels to clean modern energies in the residential sector. It is estimated that in primary OC, the global average was about 20% BrC, but this ratio varied from 13% to 47%, depending on sector and region. In areas with high residential solid fuel combustion emissions, the ratio was generally twice the value in other areas. Uncertainties in the work are associated with the concept of BrC and measurement technologies, pointing to the need for more studies on BrC analysis and quantification in both emissions and the air. (c) 2022 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The risk of carbon emissions from permafrost is linked to an increase in ground temperature and thus in particular to thermal insulation by vegetation, soil layers and snow cover. Ground insulation can be influenced by the presence of large herbivores browsing for food in both winter and summer. In this study, we examine the potential impact of large herbivore presence on the soil carbon storage in a thermokarst landscape in northeastern Siberia. Our aim in this pilot study is to conduct a first analysis on whether intensive large herbivore grazing may slow or even reverse permafrost thaw by affecting thermal insulation through modifying ground cover properties. As permafrost soil temperatures are important for organic matter decomposition, we hypothesize that herbivory disturbances lead to differences in ground-stored carbon. Therefore, we analyzed five sites with a total of three different herbivore grazing intensities on two landscape forms (drained thermokarst basin, Yedoma upland) in Pleistocene Park near Chersky. We measured maximum thaw depth, total organic carbon content, delta C-13 isotopes, carbon-nitrogen ratios, and sediment grain-size composition as well as ice and water content for each site. We found the thaw depth to be shallower and carbon storage to be higher in intensively grazed areas compared to extensively and non-grazed sites in the same thermokarst basin. First data show that intensive grazing leads to a more stable thermal ground regime and thus to increased carbon storage in the thermokarst deposits and active layer. However, the high carbon content found within the upper 20 cm on intensively grazed sites could also indicate higher carbon input rather than reduced decomposition, which requires further studies including investigations of the hydrology and general ground conditions existing prior to grazing introduction. We explain our findings by intensive animal trampling in winter and vegetation changes, which overcompensate summer ground warming. We conclude that grazing intensity-along with soil substrate and hydrologic conditions-might have a measurable influence on the carbon storage in permafrost soils. Hence the grazing effect should be further investigated for its potential as an actively manageable instrument to reduce net carbon emission from permafrost.
The China-Pakistan Economic Corridor (CPEC), a key hub for trade, is susceptible to glacial lake outburst floods. The distributions and types of glacial lakes in the CPEC are not well documented. In this study, cloud-free imagery acquired using the Landsat 8 Operational Land Imager during 2016-2018 was used to delineate the extent of glacial lakes in the mountainous terrain of the CPEC. In the study domain, 1341 glacial lakes (size >= 0.01 km(2)) with a total area of 109.76 +/- 9.82 km(2) were delineated through the normalized difference water index threshold method, slope analysis, and a manual rectification process. On the basis of the formation mechanisms and characteristics of glacial lakes, four major classes and eight subclasses of lakes were identified. In all, 492 blocked lakes (162 end moraine-dammed lakes, 17 lateral moraine-dammed lakes, 312 other moraine-dammed lakes, and 1 ice-blocked lake), 723 erosion lakes (123 cirque lakes and 600 other erosion lakes), 86 supraglacial lakes, and 40 other glacial lakes were identified. All lakes were distributed between 2220 and 5119 m a.s.l. At higher latitudes, the predominate lake type changed from moraine-related to erosion. From among the Gez, Taxkorgan, Hunza, Gilgit, and Indus basins, most glacial lakes were located in the Indus Basin. The number and area of glacial lakes were larger on the southern slopes of the Karakoram range.
India is currently the second-largest emitter of black carbon (BC) in the world, with emissions projected to rise steadily in the coming decades. In view of the large variations associated with BC emission inventories in this region, model outputs of BC mass and radiative forcing (RF) need to be validated against long-term regionally representative atmospheric measurements. Such measurements are highly scattered spatially as well as temporally in India, and a systematic evaluation of BC data is non-existent so far. To address this issue, we present here a comprehensive review of BC measurements in India from a survey of > 140 studies spanning 2002-2018. In addition to summarizing baseline BC levels in urban, semi-urban, rural and remote locations, we report impacts of anomalous environmental and/or emission conditions, e.g., truck/general strikes, firework events, fog/haze episodes, large-scale biomass burning events, etc. We also present a discussion on major BC sources and climate impacts (in terms of direct RF) in major land-use categories, mitigation strategies currently employed on a national scale, and recent advances in measuring brown carbon (BrC) in India. We identify key areas for improvement, such as - i) the need for long-term BC monitoring networks, especially in regions where estimated emissions are high but measurement coverage is low; ii) the general lack of understanding, despite some recent reports, of BC aerosol mixing states, aging and direct climate effects in the Indian context; iii) the need to shift from qualitative approaches of BC source apportionment to robust quantitative measures; and iv) the prospects for coupled chemical-optical characterization of BrC for a better understanding of its sources and climate effects. We list potential research directions for the scientific community to address these knowledge gaps. We also believe that this review will be beneficial to policymakers for prioritizing BC mitigation efforts.
This study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study. (C) 2017 Published by Elsevier Ltd.
A black carbon (BC) emission inventory for Mexico is presented. Estimate was performed by using two approaches, based on fuel consumption and emission factors in a top-down scheme, and the second from PM25 emission data and its correlation with black carbon by source category, assuming that black carbon = elemental carbon. Results show that black carbon emissions are in interval 53-473 Gg using the fuel consumption approach and between 62 and 89 using the sector method. Black carbon key sources come from biomass burning in the rural sector, with 47 percent share to the National total. Mobile sources emissions account to 16% to the total. An opportunity to reduce, in the short-term, carbon dioxide equivalent (CO2-eq) emissions by reducing black carbon emissions would be obtained in reducing emissions mainly from biomass burning in rural housing sector and diesel emissions in the transport sector with important co-benefits in direct radiative forcing, public health and air quality. (C) 2014 Elsevier B.V. All rights reserved.
Direct radiative forcing at top of the atmosphere for black carbon aerosols from two inventories comes out to be +0.33 W m(-2) for Global Emission Inventory Activity (GEIA) and +0.14 W m(-2) for BOND (Bond et al., 2004). However, for organic matter aerosols, it is simulated as -0.44 W m(-2) for GEIA and -0.11 W m(-2) with BOND inventory. Simulated annual global burden and aerosol optical depth of carbonaceous aerosols from GEIA and BOND are also compared. Normalised differences plots show that model simulates generally higher values of carbonaceous aerosols with GEIA, which are far superior in some parts of the globe as compared to those simulated with BOND emission inventory. An evaluation of these quantities with the median of the response of the AeroCom models is considered here as a benchmark - shows that while simulations with GEIA inventory have closer agreement, values of radiative forcing with BOND inventory are comparatively of smaller magnitudes over most parts of the globe. The reasons for this disparity in results for the latter may possibly be attributed to key differences between the two inventories. The main conclusion of this study is that the radiative forcing appears to be highly sensitive to carbonaceous content in aerosol compositions.
A box model has been used to compare the burdens, optical depths and direct radiative forcing from anthropogenic PM2.5 aerosol constituents over the Indian subcontinent. A PM2.5 emission inventory from India for 1990, compiled for the first time, placed anthropogenic aerosol emissions at 12.6 Tg yr(-1). The contribution from various aerosol constituents was 28% sulphate, 25% mineral (clay), 23% fly-ash, 20% organic matter and 4% black carbon. Fossil fuel combustion and biomass burning accounted for 68% and 32%, respectively, of the combustion aerosol emissions. The monthly mean aerosol burdens ranged from 4.9 to 54.4 mg m(-2) with an annual average of 18.4 +/- 22.1 mg m(-2). The largest contribution was from fly-ash from burning of coal (40%), which has a high average ash content of 30%. This was followed by contributions of organic matter (23 %) and sulphate (22%). Alkaline constituents of fly-ash could neutralise rainfall acidity and contribute to the observed high rainfall alkalinity in this region. The estimated annual average optical depth was 0.08 +/- 0.06, with sulphate accounting For 36%, organic matter for 32% and black carbon for 13%, in general agreement with those of Satheesh et al. (1999). The mineral aerosol contribution (5%) was lower than that from the previous study because of wet deposition from high rainfall in the months of high emissions and the complete mixing assumption in the box model. The annual average radiative forcing was - 1.73 +/- 1.93 W m-2 with contributions of 49% from sulphate aerosols, followed by organic matter (26%), black carbon (11%) and fly-ash (11%). These results indicate the importance of organic matter and fly-ash to atmospheric optical and radiative effects. The uncertainties in estimated parameters range 80-120% and result largely from uncertainties in emission and wet deposition rates. Therefore, improvement is required in the emissions estimates and scavenging ratios, to increase confidence in these predictions. (C) 2000 Elsevier Science Ltd. All rights reserved.