共检索到 7

Reconstructing historical climate change from deep ground temperature measurements in cold regions is often complicated by the presence of permafrost. Existing methods are typically unable to account for latent heat effects due to the freezing and thawing of the active layer. In this work, we propose a novel method for reconstructing historical ground surface temperature (GST) from borehole temperature measurements that accounts for seasonal thawing and refreezing of the active layer. Our method couples a recently developed fast numerical modeling scheme for two-phase heat transport in permafrost soils with an ensemble-based method for approximate Bayesian inference. We evaluate our method on two synthetic test cases covering both cold and warm permafrost conditions as well as using real data from a 100 m deep borehole on Sardakh Island in northeastern Siberia. Our analysis of the Sardakh Island borehole data confirms previous findings that GST in the region have likely risen by 5-9 degrees C between the pre-industrial period of 1750-1855 and 2012. We also show that latent heat effects due to seasonal freeze-thaw have a substantial impact on the resulting reconstructed surface temperatures. We find that neglecting the thermal dynamics of the active layer can result in biases of roughly -1 degrees C in cold conditions (i.e., mean annual ground temperature below -5 degrees C) and as much as -2.6 degrees C in warmer conditions where substantial active layer thickening (>200 cm) has occurred. Our results highlight the importance of considering seasonal freeze-thaw in GST reconstructions from permafrost boreholes. Plain Language Summary Long-term changes in the temperature of the atmosphere are recorded in the solid Earth due to the insulating properties of soil and rock. As a result, it is possible to estimate past changes in temperature at the interface between the ground and the atmosphere by measuring ground temperatures deep below Earth's surface. In cold regions, the presence of permafrost, that is, ground that remains frozen throughout the year, complicates such analyses due to the effects of water freezing and thawing in the soil. In this work, we present a new method for reconstructing past changes in ground surface temperature from boreholes situated in permafrost using a computational model of heat flow that accounts for these effects. We evaluate our method on both synthetic test cases as well as real data from a 100 m deep borehole in northeastern Siberia. Our results demonstrate that annual freezing and thawing of water near the surface has a substantial impact on the reconstructed ground surface temperature (GST), especially in regions where permafrost is thawing. The proposed method is the first to be widely applicable to ground temperatures measured in permafrost and thus constitutes a valuable new tool for understanding past and present climate change in cold regions.

期刊论文 2024-07-01 DOI: 10.1029/2024JF007734 ISSN: 2169-9003

Permafrost degradation is altering biogeochemical processes throughout the Arctic. Thaw-induced changes in organic matter transformations and mineral weathering reactions are impacting fluxes of inorganic carbon (IC) and alkalinity (ALK) in Arctic rivers. However, the net impact of these changing fluxes on the concentration of carbon dioxide in the atmosphere (pCO(2)) is relatively unconstrained. Resolving this uncertainty is important as thaw-driven changes in the fluxes of IC and ALK could produce feedbacks in the global carbon cycle. Enhanced production of sulfuric acid through sulfide oxidation is particularly poorly quantified despite its potential to remove ALK from the ocean-atmosphere system and increase pCO(2), producing a positive feedback leading to more warming and permafrost degradation. In this work, we quantified weathering in the Koyukuk River, a major tributary of the Yukon River draining discontinuous permafrost in central Alaska, based on water and sediment samples collected near the village of Huslia in summer 2018. Using measurements of major ion abundances and sulfate (SO42-) sulfur (S-34/S-32) and oxygen (O-18/O-16) isotope ratios, we employed the MEANDIR inversion model to quantify the relative importance of a suite of weathering processes and their net impact on pCO(2). Calculations found that approximately 80% of SO42- in mainstem samples derived from sulfide oxidation with the remainder from evaporite dissolution. Moreover, S-34/S-32 ratios, C-13/C-12 ratios of dissolved IC, and sulfur X-ray absorption spectra of mainstem, secondary channel, and floodplain pore fluid and sediment samples revealed modest degrees of microbial sulfate reduction within the floodplain. Weathering fluxes of ALK and IC result in lower values of pCO(2) over timescales shorter than carbonate compensation (similar to 10(4) yr) and, for mainstem samples, higher values of pCO(2) over timescales longer than carbonate compensation but shorter than the residence time of marine SO42- (similar to 10(7) yr). Furthermore, the absolute concentrations of SO42- and Mg2+ in the Koyukuk River, as well as the ratios of SO42- and Mg2+ to other dissolved weathering products, have increased over the past 50 years. Through analogy to similar trends in the Yukon River, we interpret these changes as reflecting enhanced sulfide oxidation due to ongoing exposure of previously frozen sediment and changes in the contributions of shallow and deep flow paths to the active channel. Overall, these findings confirm that sulfide oxidation is a substantial outcome of permafrost degradation and that the sulfur cycle responds to permafrost thaw with a timescale-dependent feedback on warming.

期刊论文 2023-11-01 DOI: 10.1029/2022GB007644 ISSN: 0886-6236

The study examines the thermodynamic structure of the marine atmospheric boundary layer (MABL) and its effect on the aerosol dynamics in the Indian Ocean sector of Southern Ocean (ISSO) between 30 degrees S-67 degrees S and 57 degrees E-77 degrees E. It includes observations of aerosols and meteorology collected during the Xth Southern Ocean Expedition conducted in December 2017. The results revealed the effect of frontal-region-specific air-sea coupling on the thermodynamic structure of MABL and its role in regulating aerosols in ISSO. The MABL over the subtropical front was unstable and formed a well-evolved mixed layer ( 2400 m) capped by low-level inversions ( 660 m). Convective activities in the Sub-Antarctic Frontal region were associated with the Agulhas Retroflection Current, which supported the forma-tion of a well-developed mixed layer ( 1860 m). The mean estimates of aerosol optical depth (AOD) and black carbon (BC) mass concentrations were 0.095 +/- 0.006 and 50 +/- 14 ng m-3, respectively, and the resultant clear sky direct shortwave radiative forcing (DARF) and atmospheric heating rate (HR) were 1.32 +/- 0.11 W m-2 and 0.022 +/- 0.002 K day-1, respectively. In the polar front (PF) region, frequent mid-latitude cyclones led to highly stabilized MABL, supported low-level multi-layered clouds (>3-layers) and multiple high-level inversions (strength > 0.5 K m-1 > 3000 m). The clouds were mixed-phased with temperatures less than -12 degrees C at 3000 m altitude. Interestingly, there was higher loading of dust and BC aerosols (276 +/- 24 ng m-3), maximum AOD (0.109 +/- 0.009), clear sky DARF (1.73 +/- 0.02 W m-2), and HR (0.029 +/- 0.005 K day-1). This showed an accumulation of long-range advected anthro-pogenic aerosols within baroclinic-boundaries formed over the PF region. Specifically, in the region south of PF, weak convection caused weakly-unstable MABL with a single low-level inversion followed by no clouds/single-layer clouds. Predominant clean maritime air holding a small fraction of dust and BC accounted for lower estimates of AOD (0.071 +/- 0.004), BC concentrations (90 +/- 55 ng m-3) and associated clear sky DARF and HR were 1.16 +/- 0.06 W m-2 and 0.019 +/- 0.001 K day-1, respectively.

期刊论文 2023-02-01 DOI: 10.1016/j.scitotenv.2022.159770 ISSN: 0048-9697

Direct Current (DC) Resistivity and Induced Polarization (IP) response of six profiles were measured using the Gradient electrode configuration in Adventdalen, Svalbard, to characterise the near-surface stratigraphy of the soil and to account for geotechnical and environmental aspects of global warming in the arctic region. In addition, Wenner array data was collected for the selected profiles to examine its effectiveness as compared to the Gradient array, given the characteristics of the study site. Two commercial inversion software programs, Res2DINV and AarhusINV, were used for the inversion of the DC resistivity and IP data, to compare the software. Physical soil properties, including porosity, water saturation, water salinity, freezing temperature and grain size distribution, previously measured from samples retrieved from wells along the studied profiles, were integrated in this study to investigate the correlation with geoelectrical properties of the sediments inferred from the DC resistivity and IP data. Results from processing of the Wenner array DC resistivity data provided higher resolution as compared to the Gradient array data, especially from deeper parts of the models, due to its higher signal-to-noise ratio. The Wenner array data also indicated better inversion result for the IP data as distinctive anomalies were better indicated in data from Wenner array survey. The Wenner array data also provided a realistic trend for the anomalies, thanks to the symmetrical geometry of the electrodes during the survey, although at the cost of time and higher expenses. Inversion results proved that AarhusINV resolved the geometry of the subsurface layers with higher resolution compared with the Res2DINV. However, the two inversion algorithms use slightly different parameters for the processing and for presenting the results, thus only allowing qualitative comparison. Based on the interpretations of the DC resistivity and IP data, four distinctive zones were identified from the surface to the maximum depth of 26 m, consisting of (i) unfrozen active-layer-(silts and sands), with intermediate resistivity values 200-300 omega center dot m; (ii) frozen soil with 3-10 m thickness and resistivity values between 2500 and 5000 omega center dot m; (iii) unfrozen soil (cryopeg) with high salinity and low resistivity of 40 omega center dot m; and finally (iv) clayey unfrozen soil sediments with low resistivity ranging 10-20 omega center dot m, at depths between 13 and 26 m. The IP data allowed for the delineation of a low chargeability zone near the surface and a high chargeability zone at greater depth which denote the active layer, lower parts of unfrozen soil sediments and cryopeg respectively, within the top 10 m of the subsurface. The 3D subsurface model of the study area was created based on interpretations of the DC resistivity and IP data and was constrained by the description of the subsurface stratigraphy from nearby wells, which provided detailed information about the vertical stratigraphy of the study area. In addition, a good correlation was observed between the studied physical properties of the sediments and the DC resistivity data for the intersecting profile SVAER04, as the interface between high and low resistivity data at ca. 10 m depth coincided the sedimentary formation with intermediate-fine grain size, high porosity, high water saturation and high salt content. Our findings show that joint application of the geoelectrical surveys and laboratory analysis of soil samples are an efficient complement to each other. These methods can be used as an alternative to each other to investigate larger areas where achieving high resolution data is not necessary.

期刊论文 2021-12-01 DOI: 10.1016/j.jappgeo.2021.104497 ISSN: 0926-9851

Thin sandstone reservoirs of the fan delta front sub-facies occur in the early Neogene (Miocene) series of the Aketao (Akto) structural belt within the Kunlun piedmont zone of the Tarim Basin. Oil and gas reservoirs in this area correspond to stratigraphic traps. However, owing to the low density of the 2D seismic survey grid deployed in the Aketao belt, inferior seismic data quality, and lack of well logging data, reservoir prediction in this area suffers from a multiplicity of problems and it is difficult to effectively identify sand bodies. Here, a new research approach is proposed involving the use of 3D seismic, well logging, and drilling data from a neighboring highly-explored 3D seismic survey area as a reference for the 2D seismic interpretation of the non-drilled Aketao survey area. Moreover, this approach is integrated with forward modeling and the inversion of post-stack seismic data to identify sand bodies. A comparison of the seismic reflection characteristics clarifies that these 3D and 2D seismic survey areas share similar sedimentary environments. Forward modeling confirms their similar reservoir characteristics, while the reservoir distribution in the 2D seismic survey area is effectively mapped via the inversion. The results show that for a 2D seismic survey area characterized by a low degree of hydrocarbon exploration and appraisal, and a lack of well logging data, the proposed approach can confirm the sedimentary characteristics that correspond to the seismic reflection characteristics, and can quantitatively map the reservoir thickness.

期刊论文 2021-01-01 DOI: http://dx.doi.org/10.3389/feart.2022.1030782

Currently, the community lacks capabilities to assess and monitor landscape scale permafrost active layer dynamics over large extents. To address this need, we developed a concept of a remote sensing based Soil Inversion Model for regional Permafrost (SIM-P) monitoring. The current SIM-P framework includes a satellite-based soil process model and a soil dielectric model. We are also working on incorporating a radar scattering model for Arctic tundra into the SIM-P framework. A unified soil parameterization scheme was developed to harmonize key soil thermal, hydraulic and dielectric parameters in the soil process and radar models that can be used in the joint soil-radar inversion framework. The soil parameter retrievals of the SIM-P framework include soil organic content (SOC) and active layer thickness (ALT). Initial tests of SIM-P using in-situ soil permittivity observations showed reasonable accuracy in predicting site-level SOC and soil temperature profiles at an Alaska tundra site and ALT in Arctic Alaska. SIM-P will be further tested using airborne P- and L-band radar data collected during NASA's Arctic Boreal Vulnerability Experiment (ABoVE) to evaluate the sensitivity of longwave radar to active layer properties.

期刊论文 2019-01-01 DOI: 10.1109/igarss.2019.8898856 ISSN: 2153-6996

[1] We apply traditional geothermal spectrum inversion to precision temperature logs and thermal conductivity from 10 wells in the Canadian Arctic Archipelago (75 degrees to 81 degrees N). Sites lie beyond the Holocene marine limit, and no effect of deep permafrost dynamics is expected. Ground surface temperature (GST) changes correlate with the Little Ice Age and Little Climatic Optimum with average amplitudes relative to 1980 of -2.7 K and +1.6 K, respectively. Results correlate broadly with similar reconstructions for this area and Greenland ice cap holes GRIP and Dye-3 to the southeast. An offshore site in 244 m water yields a Little Ice Age seabed temperature amplitude of -0.7 K, suggesting a moderated climate impact on regional ocean temperatures. Nearshore boreholes where permafrost is aggrading owing to glacioisostatic emergence are excluded; we demonstrate that traditional inversion codes without latent heat of phase change predict the magnitude of the emergence signal but a timing far too recent.

期刊论文 2008-07-24 DOI: 10.1029/2008GC002064
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页