在列表中检索

共检索到 2

Current calculation methods for the vertical bearing capacity of steel pipe piles are predominantly designed for smaller diameters and do not account for the soil inside the pile. This necessitates an evaluation of their applicability to piles with diameters exceeding 2.0 m. This study aims to refine the existing formula for calculating vertical bearing capacity, as outlined in the Port Engineering Foundation Code of China, by investigating the vertical bearing capacity of large-diameter steel pipe piles through numerical simulations. By analyzing the relationship between the internal friction resistance of the soil core within the pipe and the bearing capacity for diameters ranging from 2 m to 10 m, this paper proposes a revised formula specifically tailored for steel pipe piles with diameters greater than 2 m, incorporating the effect of the soil core. The validity of the proposed formula is then confirmed through comparison with field data from four large-diameter steel pipe piles. The results demonstrate that the modified method proposed in this study performs better than the original formula when compared with the measured data.

期刊论文 2024-11-01 DOI: 10.3390/buildings14113481

This paper presents an analysis of long, large-diameter bored piles' behavior under static and dynamic load tests for a megaproject located in El Alamein, on the northern shoreline of Egypt. Site investigations depict an abundance of limestone fragments and weak argillaceous limestone interlaid with gravelly, silty sands and silty, gravelly clay layers. These layers are classified as intermediate geomaterials, IGMs, and soil layers. The project consists of high-rise buildings founded on long bored piles of 1200 mm and 800 mm in diameter. Forty-four (44) static and dynamic compression load tests were performed in this study. During the pile testing, it was recognized that the pile load-settlement behavior is very conservative. Settlement did not exceed 1.6% of the pile diameter at twice the design load. This indicates that the available design manual does not provide reasonable parameters for IGM layers. The study was performed to investigate the efficiency of different approaches for determining the design load of bored piles in IGMs. These approaches are statistical, predictions from static pile load tests, numerical, and dynamic wave analysis via a case pile wave analysis program, CAPWAP, a method that calculates friction stresses along the pile shaft. The predicted ultimate capacities range from 5.5 to 10.0 times the pile design capacity. Settlement analysis indicates that the large-diameter pile behaves as a friction pile. The dynamic pile load test results were calibrated relative to the static pile load test. The dynamic load test could be used to validate the pile capacity. Settlement from the dynamic load test has been shown to be about 25% higher than that from the static load test. This can be attributed to the possible development of high pore water pressure in cohesive IGMs. The case study analysis and the parametric study indicate that AASHTO LRFD is conservative in estimating skin friction, tip, and load test resistance factors in IGMs. A new load-settlement response equation for 600 mm to 2000 mm diameter piles and new recommendations for resistance factors phi qp, phi qs, and phi load were proposed to be 0.65, 0.70, and 0.80, respectively.

期刊论文 2024-08-01 DOI: 10.3390/buildings14082268
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页