共检索到 28

Lead (Pb) is among the most toxic heavy metals in biological systems and causes toxicity from seed germination to yield formation. High Pb concentrations lead to oxidative damage and impair water relation and nutrition uptake in plants. Rye (Secale cereale L.) is an abiotic stress-tolerant crop, distributed in Eastern and Central Europe. Pb concentration in soils higher than 30 mg kg-1 is commonly toxic to plants. This study investigated the effects of different Pb concentrations [0, 100, 200 and 400 mu M of Pb(NO3)2] on mineral element concentrations (B, Ca, Cu, Fe, K, Mg, Mn, Na and Zn) in rye plants. After 15 days of Pb stress, the levels of mineral elements (B, Ca, Cu, Fe, K, Mg, Zn, Mn and Na), and Pb accumulation were detected using by ICP-OES (Inductively coupled plasma-optical emission spectrometry) in leaves and roots. Under 0, 100, 200 and 400 mu M Pb application, the Pb accumulation varied between 0.005-2.94 and 5.63-13.63 mg kg-1 in leaves, and 0.03-69.34-168.11-329.74 mg kg-1 in roots, respectively. Roots accumulated higher levels of Pb than the leaves. The amounts of Na, Fe and B concentrations reduced, whereas the contents of Ca, K, Mn, Cu, and Zn increased in both leaves and roots in a concentration-dependent manner. The maximum rate of increase or decrease in elemental contents was recorded for 400 mu M Pb-exposed plants. In addition, Mg content increased in leaves, but decreased in roots. Overall, our findings suggest that Pb-exposure causes alterations in mineral element concentrations in a concentration-dependent manner, which could be useful to make risk assessments for Pb pollution in agricultural lands.

期刊论文 2025-06-01 DOI: 10.1007/s42976-024-00581-9 ISSN: 0133-3720

This study investigates the corrosion behaviour of grounding down leads in transmission towers subjected to wet-dry cycle in saline soils of Northwest China through accelerated corrosion experiments. Using saline soil from the Hexi Corridor, rich in chloride and sulphate ions, corrosion rates were assessed via weight loss, polarisation curves, scanning electron microscopy and X-ray diffraction analyses. Results demonstrate that wet-dry cycle significantly accelerates corrosion due to enhanced chloride ion diffusion and corrosion kinetics, with the highest average weight loss rate (3.08%) and corrosion current density (0.3526 mA/cm(2)). Scanning electron microscopy analysis revealed extensive cracking in corrosion product layers under cyclic wet-dry conditions, weakening their protective capability and further intensifying corrosion. The primary corrosion products identified were FeO and Fe2O3, consistent with field samples, indicating that the corrosion mechanism remains unchanged under accelerated conditions. This study provides novel insights into how cyclic moisture conditions affect grounding materials in saline environments, guiding material selection, maintenance strategies and site selection to improve transmission line reliability and safety.

期刊论文 2025-05-29 DOI: 10.1177/1478422X251345215 ISSN: 1478-422X

Despite the widespread presence of heavy metals (HMs) in contaminated soils, there is a limiting understanding of physiological and cellular adaptive mechanisms of castor bean (Ricinus communis L.) under lead (Pb) contaminated soils of Chakera having enduring history of wastewater irrigation. This gap in knowledge hinders the development of effective strategies for managing soil pollution and protecting agricultural productivity in areas exposed to wastewater irrigation. Therefore, current pot study was conducted on two castor bean genotypes (NIAB-2020 and DS-30) on Pb contaminated soils of Chakera in glasshouse for a period of 120 days. Results showed that physiological indicators decreased under stressed conditions in NIAB-2020 and DS-30, suggesting impaired plant development. Electrolyte leakage (EL) increased in stressed plants indicating damage to cell membrane due to oxidative damage. Biochemically, the levels of superoxide dismutase (SOD) and peroxidase (POD) decreased whereas catalase (CAT) and ascorbate peroxidase (APX) showed an increase in both castor bean genotypes to mitigate oxidative stress. In similar pattern, both genotypes exhibited a reduction in total soluble proteins (TSP) and total free amino acids (TFA), while conversely total soluble sugars (TSS) and total phenolic contents (TPC) increased under stress conditions. Significant correlation was observed between various physiological, biochemical, and antioxidant enzyme responses, indicating their role as stressed biomarkers on Pb contaminated soils. Overall, NIAB-2020 outperformed DS-30 in terms of physiological and biochemical adaptations, evidencing superior adaptive approach. However, future field trials are compulsory to validate the findings of the study.

期刊论文 2025-05-01 DOI: 10.1007/s00128-025-04060-7 ISSN: 0007-4861

The presence of toxic heavy metals lead (Pb) and cadmium (Cd) in polluted soil damage crop production and consequently harms human and livestock health. Tartary buckwheat (Fagopyrum tataricum) is a potential model plant for heavy metal phytoremediation because of its valuable characteristics of high heavy metal tolerance and abundant biomass production. Here, we report that the Tartary buckwheat FtMYB46-FtNRAMP3 module enhances plant Pb and Cd tolerance. RNA sequencing analysis showed that Pb treatment specifically induced expression of FtNRAMP3, a member of the NRAMP (Natural Resistance-Associated Macrophage Protein) transporter gene family. Further cytological and biochemical analysis revealed that FtNRAMP3 was localised to the plasma membrane and significantly contributed to increased tolerance to Pb and Cd in yeast cells. Consistently, transgenic overexpression of FtNRAMP3 in Arabidopsis significantly increased plant tolerance to Pb and Cd applications, reducing Pb concentration but increasing Cd concentration in the overexpression transgenic plants. Subsequent yeast one-hybrid and electrophoretic mobility shift assays showed that the transcription factor FtMYB46 directly binds to the FtNRAMP3 promoter. Further, FtMYB46 promoted FtNRAMP3 expression and increased plant Pb and Cd tolerance. Overall, this study demonstrates the important role of the FtMYB46-FtNRAMP3 module and its potential value in the phytoremediation of Pb and Cd stress.

期刊论文 2025-04-02 DOI: 10.1111/pce.15518 ISSN: 0140-7791

Lead (Pb) toxicity impairs the growth, yield, and biochemical traits of rice, making it essential to mitigate Pb stress in soil and restore its growth and production. This study investigated the potential of ascorbic acid-coated quantum dots (AsA-QDs) in alleviating Pb stress in two rice cultivars, Japonica (JP-5) and Indica (Super Basmati), grown in pots under Pb stress (50 mg/kg as lead chloride) with AsA-QD suspensions (50 ppm and 100 ppm) as treatments. The synthesized AsA-QDs were characterized by zeta potential (-14.4 mV), particle size (472.3 nm, PDI 0.745), UV-Vis absorption peak (240 nm), FT-IR analysis revealing functional groups (carboxylic acid and alkene), and TEM showing spherical morphology (average size 9.43 nm). Pb stress reduced key traits in JP-5, including tillers per plant (11.11 %), grain yield (18.22 %), kernel weight (18.22 %), protein (40.19 %), phenolic content (59.66 %), and antioxidant capacity (17.75 %), while 50 ppm AsA-QDs improved these by 33.33 %, 5.73 %, 2.03 %, and 13.19 %, respectively. Similarly, Pb stress reduced plant height, T/P, biomass yield (BY), GY, TKW, total sugars, reducing sugars, non-reducing sugars, starch, proteins, and TPC in Super Basmati by 19.76 %, 21.43 %, 11.01 %, 11.01 %, 7.52 %, 38.09 %, 7.24 %, 13.96 %, 11.97 %, and 40.39 %, respectively, while PbQD1 improved these traits by 14.29 %, 15.49 %, 9.25 %, 109.52 %, 8.31 %, 31.72 %, 25.91 %, and 7.075 %, respectively. The findings demonstrate that AsA-QDs effectively mitigate Pb toxicity by reducing oxidative stress, enhancing growth parameters, and restoring yield components, establishing them as a promising nanomaterial for sustainable crop resilience under Pb stress.

期刊论文 2025-04-01 DOI: 10.1016/j.jtemb.2025.127603 ISSN: 0946-672X

Regulations banning lead have effectively reduced its environmental impacts, but trace amounts of lead remain in the environment posing potential health risks and ecosystem damage. This study aims to measure lead isotopes in airborne particulates and topsoil in southern Taiwan and identify potential lead sources in these environments. Samples were collected from various environmental sites catalogued into factory and residential areas. Fine (PM2.5) and coarse particles (PM2.5-10) were collected from ambient air and topsoil at the same locations. Radioactive lead isotopes were analyzed using resin extraction with a low-energy germanium detector, while stable lead isotopes were measured via inductively coupled plasma mass spectrometry (ICP-MS). The concentrations of PM2.5 and PM10 ranged from 9.97 to 41.37 mu g/m(3) and 14.04-46.69 mu g/m(3), and the concentrations of lead in airborne particulates were 1.86-7.97 ng/m(3) (in PM2.5) and 6.49-14.04 ng/m(3) (in PM10), and in topsoil were 2.00-14.00 mg/kg, respectively. Radioactive lead isotopes in the airborne particulates and top soils were in the range of minimum detectable activity (MDA) < 2.0-19.0 mBq/m(3 )and 8.50-65.2 Bq/kg, respectively. Moreover, the stable lead isotope ratios of Pb-208/Pb-207 and Pb-206/Pb-207 were 2.43-2.50 and 1.15-1.20, respectively. The results resemble those from China (coal dust, PM, soils) and the USA (PM, soils, gasoline, paint, coals and fly ash). The potential sources of lead in the airborne particulates and topsoil in southern Taiwan were attributed to the combination of long-range transport (LRT) of lead from anthropogenic activities and the resuspension of residual lead in the local soils from early usage in southern Taiwan.

期刊论文 2025-02-01 DOI: 10.1016/j.apr.2024.102390 ISSN: 1309-1042

Phytoremediation stands at the forefront of modern environmental science, offering an innovative and cost-effective solution for the remediation of heavy-metal-contaminated soils through the natural capabilities of plants. This study aims to investigate the effects of lead (Pb) and cadmium (Cd) metals on plant growth (e.g., seedling height, stem diameter, fresh and dry weight), physiological properties (e.g., tissue relative water content, tissue electrical conductivity), and biochemical parameters (e.g., chlorophyll content, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) enzyme activities) of maize compared to the control group under greenhouse conditions at the Atat & uuml;rk University Plant Production Application and Research Center. The results show that plant height decreased by 20% in the lead (Pb3000) application and by 42% in the cadmium (Cd300) application compared to the control group. The highest Pb dose (Pb3000) caused a 15% weight loss compared to the control, while the highest Cd dose (Cd300) caused a weight loss of 63%. The accumulation rates of heavy metals in soil, roots, and aboveground parts of plants indicated that maize absorbed and accumulated more Cd compared to Pb.

期刊论文 2025-02-01 DOI: 10.3390/life15020310

Industrial hemp is a crop with a high tolerance and accumulation of lead (Pb). Improving the Pb tolerance and accumulation capacity of industrial hemp is of great scientific and practical importance. This study utilized a pot with soil contaminated with Pb to investigate the differences in Pb tolerance between two industrial hemp varieties, Yunma1 (YM) and Shaanxi Industrial Hemp (SM), under Pb stress. The results indicated that Pb mainly accumulates in the roots of YM and SM (70-80%), with YM having a higher Pb accumulation than SM. It is worth nothing that under high Pb concentration conditions (5000 mg/kg), the Pb accumulation capacity of YM is twice that of SM. Accumulation characteristics of Pb in different plant tissues followed the pattern: roots > stems > leaves > fibers > seeds. In YM, approximately 70% of the absorbed Pb was fixed in the roots and 30% was transported to the above-ground parts. In contrast, SM transported more than 50% of absorbed Pb by roots to the above-ground areas, causing some degree of damage to stems and leaves. Even when Pb concentrations exceed 4000 mg/kg, YM exhibits strong tolerance (tolerance index greater than 90%), with normal growth and no signs of toxicity. However, SM showed a tolerance level of < 50% at high Pb concentrations, with significant heavy metal toxicity symptoms in the above-ground areas. These results provide important information for the remediation of Pb contaminated soils in mining areas.

期刊论文 2025-02-01 DOI: 10.3390/toxics13020090

Lead (Pb2+) ions give an imminent danger since they have been known to cause persistent damage to humans, plants, and animals, even at low concentrations, and cysteine (Cys) elevated levels are critical indicators for many diseases. Therefore, their detection is critical in pharmaceutical and environmental samples. This study tailored an innovative fluorescence switch off-on assay to detect Pb2+ and Cys based on the amplification of G-quadruplex (G-4) to N-methylmesoporphyrin IX (NMM). This assay operates on the fluorescence of NMM serving as a signal reporter which could be enhanced by an adenine-guanine-rich probes G-4. Initially, the fluorescence of NMM was increased after binding with G-4 and Pb2+ and effectively quenching fluorescence without altering the structure of G-4. As it was proved by Circular dichroism (CD). The number of binding sites for Pb2+ per NMM was determined to be 0.80 with a binding constant of 1.9 x 10(4) mol /L. The presence of Cys may disrupt the interaction between Pb2+ and G-4/NMM due to its stronger binding affinity towards Pb2+ leading to high fluorescence recovery.The assay demonstrated the capability to detect Pb2+ within a concentration range of 0.4 to 1.6 mu M, achieving a high correlation coefficient (R-2 = 0.985). with the detection limit of 0.45 mu M was established. Similarly, Cys was effectively detected across a range of 1 to 6 mu M, possessing correlation (R-2 = 0.973) with a detection limit of 1.51 mu M, further confirming that the detection limit is not influenced by the starting point of the linear range. The assay detected these compounds among various other amino acids and heavy metals. Our approach is simple and innovative, enabling the accurate determination of Pb2+ and Cys concentrations in soil and medicinal samples, highlighting its potential in practical diagnostic and environmental applications.

期刊论文 2025-01-07 DOI: 10.1007/s10895-024-04106-9 ISSN: 1053-0509

Heavy metal(loid)s (HM) pollution in aquatic environments is a serious issue due to the toxicity, persistence, bioaccumulation, and biomagnification of these pollutants. The main sources of HM contamination are industrial activities, mining, agricultural practices, and combustion of fossil fuels. Fish can accumulate HMs through a process called bioaccumulation. As larger predatory fish consume smaller fish, these HMs enter the main food chains and can become increasingly concentrated in their tissues and finally reach humans. Here, we provided a general and concise conclusion from current research findings on the toxicological effects on different body systems. Exposure to HMs can lead to a range of adverse health effects, including neurological damage, developmental disorders, kidney damage, cardiovascular problems, and cancers. Their long-term accumulation can result in chronic toxicity even at low levels of exposure. HMs exert cellular cytotoxicity by disrupting essential cellular processes and structures. They can interfere with enzyme function, disrupt cell membrane integrity, induce oxidative stress, and cause DNA damage, ultimately leading to cell death or dysfunction. Prevention and control of HMs involve implementing measures to reduce their release into the environment through regulations on industrial processes, waste management, and pollution control technologies. Additionally, monitoring and remediation efforts are crucial for identifying contaminated sites and implementing strategies such as soil and water remediation to reduce human exposure and mitigate the impact on ecosystems. To conclude, HM accumulation in fish poses serious risks to public health and the environment, necessitating urgent interdisciplinary efforts to mitigate their harmful effects and promote sustainable practices that reduce HM flow into biological systems.

期刊论文 2025-01-01 DOI: 10.4081/ijfs.2024.12782 ISSN: 2239-7132
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共28条,3页