Nanotechnology offers creative and effective solutions for addressing various environmental issues, such as heavy metals (HM). The rapidly increasing HM concentrations in agricultural land have drawn considerable attention. Nanoparticles (NPs) have special physiochemical features that help reduce stress. This study assessed the viability of applying CeO2NPs 2 NPs and FeONPs to rice plants at a concentration of 25 mg/L to effectively remove the detrimental effects of lead (Pb) by using various concentrations (100 and 200 ppm) on plant development and growth. To achieve the desired concentrations, a Pb solution was prepared by dissolving lead nitrate in distilled water and added to the soil. Interestingly, the application of CeO2NPs 2 NPs and FeONPs resulted in a notable increase in plant growth, biomass, gas exchange characteristics, antioxidant enzymatic activity (SOD, POD, APX, and CAT), their gene expressions, as well as other antioxidants (phenols, prolines, amino acids, flavonoids, anthocyanins, and ascorbic acids) while simultaneously reducing oxidative stress (MDA, H2O2, 2 O 2 , and electrolyte leakage) and Pb uptake in rice. Conversely, Pb elevation in the soil increased oxidative damage and organic acid exudation pattern in the rice. At 200 ppm, a significant rise in Pb content (416.67 % and 380 %) was found in the roots and leaves of rice plants. According to our findings, rice growth can be bio-stimulated by CeO2NPs 2 NPs and FeONPs. Subsequent investigations should focus on the persistent ecological consequences and molecular mechanisms associated with the application of cerium oxide and iron oxide nanoparticles in agriculture to reduce Pb-induced oxidative stress. (c) 2024 SAAB. Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Cereals are a staple food in many regions of the world and are essential for global food security. Lead is one of the most significant environmental stressors, impacting plants throughout their life cycle and causing substantial damage to plant growth and development. It disrupts intracellular processes, thereby reducing plant productivity. The aim of this study was to determine the effect of exogenously applied vitamin PP (100 mu M) (nicotinamide) on the morphological, physiological, and biochemical parameters of spring barley var. Eunova under lead stress (1 mM Pb(NO3)2) and to determine the most effective method of applying this vitamin in a pot experiment. Vitamin PP was applied exogenously through three different methods: seed soaking, foliar application, and soil irrigation. The application of 1 mM Pb(NO3)2 resulted in decreased root (from 13.9% to 19.9%) and shoot length (from 16.2% to 24.8%) and increased catalase (CAT) activity from 45% to 106%, and peroxidase (POX) activity from 39% to 46% compared to the control. Lead stress led to an increase in proline (Pro) content from 30 to 63% and comparatively in malondialdehyde (MDA) content (rising from 61% to 79.4%), as well as elevated assimilatory pigment content (by 35%) in barley grown in the pot experiment. Exogenous vitamin PP significantly and positively influenced the improvement of the measured morphological, biochemical, and physiological parameters, reducing the toxicity of lead salts. It was shown that the most effective method of vitamin PP application was achieved through foliar spraying and irrigation.