共检索到 19

Contact Lens (CLs) are often disposed of via toilet or sinks, ending up in the wastewater treatment plants(WWTPs). Millions of CLs enter WWTPs worldwide each year in macro and micro sizes. Despite WWTPs'ability to remove solids, CLs can persist and potentially contaminate watercourses and soils. This study evaluates whether different CLs degrade in WWTP aeration tanks. Six daily CLs (Nelfilcon A,Delefilcon A, Nesofilcon A, Stenfilcon A, Narafilcon A, Somofilcon A) and four monthly CLs (Lotrafilcon B,Comfilcon A, Senofilcon A, and Samfilcon A) were immersed in aeration tanks for twelve weeks. Theirphysical and chemical properties, including water content (WC), refractive index (RI), chemical prop-erties (Fourier Transform Infrared Spectroscopy), and mechanical properties were assessed. Results show that all CLs maintained their physical appearance after 12 weeks. Neither Nelfilcon A norNarafilcon A exhibited significant changes in WC and RI, (p>0.05, Tukey test), while other daily lensesshowed variations in at least one parameter. Among monthly CLs, only Senofilcon A showed significant differences in both WC (p0.05 Tukey test). However, Somofilcon A displayed significant changes in stress at break (p<0.0001,Tukey test), and Elongation at Break (p<0.05, Tukey test). No changes were found in the chemicalstructure of any CLs suggesting that twelve weeks in WWTP aeration tanks is insufficient for CLsdegradation. Thesefindings highlight CLs as a potential emerging pollutant, emphasizing their persis-tence in sludge or migration into watercourses and soils (c) 2025 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. Thisis an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

期刊论文 2025-09-01 DOI: 10.1016/j.emcon.2025.100505 ISSN: 2405-6650

Horizontal frost heave disasters frequently occur in cold-region engineering projects, making it essential to understand water migration mechanisms along horizontal directions during freezing processes. Using a selfdeveloped one-dimensional visualization horizontal freezing apparatus, unidirectional horizontal freezing tests were conducted on soft clay under varying temperature gradients, and the development process of the cryostructures was continuously observed. The results indicate that the thermal-hydraulic processes, including temperature evolution, water content variation, pore-water pressure dynamics, and soil pressure changes, demonstrate similarities to vertical freezing patterns, with temperature gradients primarily influencing the magnitude of parameter variations. Under the influence of gravity, the freezing front forms an angle with the freezing direction, attributed to differential freezing rates within soil strata. Post-freezing analysis showed dualdirectional water redistribution (horizontal and vertical), with horizontal migration dominating. Maximum water content was observed 1-3 cm from the freezing front. Distinct cryostructures formed in frozen zones were identified as products of tensile stresses generated by low-temperature suction and crystallization forces. The study highlights the coupling of water transfer, thermal changes, mechanical stresses, and structural evolution during freezing and suggests that water migration and cryostructure formation are interrelated processes. This research provides robust experimental evidence for advancing the theoretical framework of horizontal water migration mechanisms in frozen soil systems.

期刊论文 2025-08-01 DOI: 10.1016/j.coldregions.2025.104511 ISSN: 0165-232X

There are many types of lenses in tailings ponds that have important influences on stability. Lens types of more than 150 tailings dams were analyzed in China's severely cold regions, cold regions, hot summers and cold winters (the civil building thermal design code (GB50176-2016)). The mechanism of lens formation is discussed in this paper. Triaxial tests of tailings were carried out with fine mud tailing lenses, notched lenses, ice lenses and soft plastic soil lenses. Moreover, a three-dimensional triaxial test model with a flexible boundary is constructed to study the influence of different lenses on the mechanical properties of the tailings. The lens can change the failure mode of the tailings. These faults can change the dilatancy failure of tailings to failure along the lens-tailings interface. With increasing confining pressure, the ability of the lens to weaken the strength of the tailings increases. At 500 kPa, the strengths of the samples with fine mud tailing lenses, notched lenses, ice lenses and soft plastic soil lenses are 95.28%, 88.79%, 76.99% and 5.49%, respectively, of those of the sample without lenses. In addition to soft plastic soil lenses, other lenses provide space to accommodate the deformation of tailings, thereby reducing the bulk strain of tailings. The conclusions of this study can provide theoretical support for studying the failure mode of tailings dams under the influence of lenses and improving the local stability of tailings ponds.

期刊论文 2025-04-03 DOI: 10.1080/15376494.2024.2364069 ISSN: 1537-6494

Lentils in Australia are primarily grown in temperate and Mediterranean climates, especially in the southern and western regions of the country. As in other parts of the world, lentil yields in these areas are significantly influenced by factors such as frost, heat, and drought, contributing to variable production. Therefore, selecting appropriate lentil varieties and determining optimal sowing times that align with favourable growing conditions is crucial. Accurate predictions of crop development are essential in this context. Current models mainly rely on photoperiod and temperature to predict lentil phenology; however, they often neglect the impact of soil water on flowering and pod set. This study investigated whether incorporating soil water as an additional factor could improve predictions for these critical growth stages. The modified model was tested using 281 data points from various lentil experiments that examined the timing of flowering (61-147 days) and pod set (77-163 days) across different combinations of location, variety, sowing time, and season. The results indicated that including soil water in the prediction model achieved an R2 value of 0.84 for flowering and 0.83 for pod set. The normalised root mean square error (NRMSE) was 0.07, and Lin's concordance correlation coefficient (LinCCC) was 0.91. The model produced an R2 of 0.88, an NRMSE of 0.05, and a LinCCC of 0.93 flowering compared to the default model, which yielded an R2 of 0.24, an NRMSE of 0.17, and a LinCCC of 0.36 for flowering. A limited sensitivity analysis of the modified model showed that variations in initial soil water and in-season rainfall significantly affected the timing of flowering and pod set. Additionally, we employed a probability framework to assess the crop's vulnerability to the last frost day and early heat stress events during the reproductive stage. This approach provided valuable insights for decision-making to mitigate risks associated with frost and heat stress. Our study suggests that integrating soil water dynamics into lentil phenology models improves the accuracy and precision of predictions regarding the timing of flowering and pod set. These improvements lead to better forecasts, ultimately helping to minimise damage from frost and heat stress during lentil cultivation and can better explain the effect of climate variability.

期刊论文 2025-03-01 DOI: 10.1016/j.eja.2024.127486 ISSN: 1161-0301

The criterion of ice lens initiation is a critical mechanical property that is essential for investigating the interactions between water and heat transport mechanisms in frost heave studies. Owing to the complexity of the ice lens initiation phenomenon, the criterion of ice lens initiation varies depending on different theoretical models, which makes uniform evaluation difficult. To investigate the intricate physical mechanism of the ice formation criterion, a unified theoretical model is proposed to simulate the ice formation process of four commonly used criteria (the neutral stress criterion, unfrozen water film criterion, pore ice pressure criterion and empirical water content criterion). The physical mechanisms of the different assessments are investigated by studying the frost heave, ice lens distribution and frost heave rate for four different soil properties. The results indicate that the neutral stress criterion is more accurate and stable for ice formation than the current wellestablished criterion for ice lens initiation. Furthermore, the study reveals significant similarities between the pore ice pressure and the unfrozen water film. The empirical water content is prone to significant errors because of the absence of a reliable physical basis.

期刊论文 2025-01-01 DOI: 10.1016/j.compgeo.2024.106833 ISSN: 0266-352X

The effect of polyphenylene sulfide binder content on the properties of injection molding polyphenylene sulfide/NdFeB magnets were investigated. The maximum filling amount of NdFeB magnetic powder was 87.6 wt.-%, and the mixing process and subsequent injection molding of the polyphenylene sulfide/NdFeB were in good condition. The melt mass-flow rate of the polyphenylene sulfide/NdFeB granular materials reached 121.7 g/10 min, the compressive strength of the polyphenylene sulfide/NdFeB magnet was 92.18 MPa, and its maximum magnetic energy product reached 5.59 MGOe. The structure and morphology characteristics of polyphenylene sulfide/NdFeB magnets were investigated using scanning electron microscopy and atomic force microscopy. The corrosion behavior of polyphenylene sulfide/NdFeB magnets was also studied using potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results indicated that the injection molding process facilitated the uniform coating of polyphenylene sulfide particles on NdFeB powder, which directly enhanced the corrosion resistance of polyphenylene sulfide/NdFeB magnets. With an increase in polyphenylene sulfide content, the surface of polyphenylene sulfide/NdFeB magnets became more uniform. The corrosion current density of 13 wt.-% polyphenylene sulfide/NdFeB magnet was approximately one order of magnitude lower than that of 9 wt.-% polyphenylene sulfide/NdFeB magnet, indicating an improved corrosion resistance of polyphenylene sulfide/NdFeB magnet.

期刊论文 2024-12-01 DOI: 10.1002/mawe.202300398 ISSN: 0933-5137

The widespread prevalence of saline environments poses a significant global environmental challenge. Salt stress, induced by saline soils, disrupts soil microecology and affects the plant-microbe-soil cycling process. Utilizing microbial fungicides stands as a primary strategy to mitigate salt stress-induced damage to plants and soils. This study investigated the influence of Bacillus subtilis (Bs) inoculation on the microbial community, assembly processes, and functional changes in bacteria and fungi in Glycyrrhiza uralensis Fisch. (licorice) seedlings under varying salt stress levels, primarily employing microbiomics techniques. Soil enzyme activities displayed a declining trend with increasing salt stress, which was mitigated by Bs inoculation. Microbiome analysis revealed a significant increase in bacterial and fungal operational taxonomic units, particularly in Ascomycetes and Nitrogen-fixing Bacteria, thereby enhancing soil denitrification. The abundance of Proteobacteria, Actinobacteriota, Bacteroidota, and Firmicutes in bacteria, as well as Ascomycota in fungi, increased with higher salt stress levels, a process facilitated by Bs inoculation. However, functional predictions indicated a reduction in the relative abundance of Dung Saprotrophs with Bs inoculation. Salt stress disrupted soil assembly processes, showcasing a continuous decline in diffusion limitation with increased salt concentration, where Bs inoculation reached a peak under moderate stress. In summary, this research elucidates the communication mechanism of Bs in enhancing salt tolerance in licorice from a microbiome perspective, contributing to a comprehensive understanding of abiotic and biotic factors.

期刊论文 2024-10-03 DOI: 10.1128/spectrum.03812-23 ISSN: 2165-0497

Soil contamination by hydrocarbons is a problem that causes severe damage to the environment and public health. Technologies such as bioremediation using native microbial species represent a promising and environmentally friendly alternative for decontamination. This study aimed to isolate indigenous fungi species from the State of Rio de Janeiro, Brazil and evaluate their diesel degrading capacity in soils contaminated with crude oil. Seven filamentous fungi were isolated after enrichment cultivation from soils collected from contaminated sites and subjected to growth analysis on diesel nutrient media. Two fungal species were pre-selected and identified by morphological genus analysis and molecular techniques as Trichoderma asperellum and Penicillium pedernalense. The microdilution test showed that T. asperellum presented better fungal growth in high diesel concentrations than P. pedernalense. In addition, T. asperellum was able to degrade 41 and 54% of the total petroleum hydrocarbon (TPH) content present in soil artificially contaminated with diesel (10 g/kg of soil) in 7 and 14 days of incubation, respectively. In higher diesel concentration (1000 g of diesel/kg of soil) the TPH degradation reached 26%, 45%, and 48%, in 9, 16, and 30 d, respectively. The results demonstrated that the selected species was suitable for diesel degradation. We can also conclude that the isolation and selection process proposed in this work was successful and represents a simple alternative for obtaining native species with hydrocarbon degradation capacity, for use in the bioremediation process in the recovery of contaminated areas in an ecologically acceptable way.

期刊论文 2024-09-15 DOI: 10.1016/j.envpol.2024.124431 ISSN: 0269-7491

Salinity is an abiotic factor limiting plant fitness and therefore forest crop productivity, and salt-affected areas have been expanding throughout the world. Ectomycorrhizal (ECM) fungi can improve the salt tolerance of woody plants, including Eucalyptus species To screen for salt-resistant Pisolithus albus (PA) isolates, 16 PA isolates were cultivated on modified Melin-Norkrans agar containing NaCl at concentrations of 0, 10, 20, and 30 dS m(-1). The P. albus isolate PA33 had the greatest salt resistance under 10 and 20 dS m(-1) NaCl, which are soil salinity levels in salt-affected areas of Thailand. We studied the effect of PA33 on Eucalyptus camaldulensis x E. pellita cuttings under salt stress (0 and 16 dS m(-1)) for 1 month. PA enhanced the growth of the Eucalyptus seedlings, as indicated by higher relative growth rates in height and root collar diameter of inoculated seedlings compared with non-inoculated seedlings. Moreover, the inoculated seedlings had less cell damage from NaCl, as indicated by significantly lesser leaf thickness and electrolyte leakage than the controls. These findings could lead to practices conferring socioeconomic and environmental benefits, as abandoned salt-affected areas could be reclaimed using such Eucalyptus seedlings inoculated with salt-tolerant ECM fungi.

期刊论文 2024-09-02 DOI: 10.1080/00275514.2024.2360607 ISSN: 0027-5514

Plant growth-promoting rhizobacteria (PGPR) have been reported to suppress various diseases as potential bioagents. It can inhibit disease occurrence through various means such as directly killing pathogens and inducing systemic plant resistance. In this study, a bacterium isolated from soil showed significant inhibition of Valsa mali. Morphological observations and phylogenetic analysis identified the strain as Pseudomonas thivervalensis, named K321. Plate confrontation assays demonstrated that K321 treatment severely damaged V. mali growth, with scanning electron microscopy (SEM) observations showing severe distortion of hyphae due to K321 treatment. In vitro twigs inoculation experiments indicated that K321 had good preventive and therapeutic effects against apple Valsa canker (AVC). Applying K321 on apples significantly enhanced the apple inducing systemic resistance (ISR), including induced expression of apple ISR-related genes and increased ISR-related enzyme activity. Additionally, applying K321 on apples can activate apple MAPK by enhancing the phosphorylation of MPK3 and MPK6. In addition, K321 can promote plant growth by solubilizing phosphate, producing siderophores, and producing 3-indole-acetic acid (IAA). Application of 0.2% K321 increased tomato plant height by 53.71%, while 0.1% K321 increased tomato fresh weight by 59.55%. Transcriptome analysis revealed that K321 can inhibit the growth of V. mali by disrupting the integrity of its cell membrane through inhibiting the metabolism of essential membrane components (fatty acids) and disrupting carbohydrate metabolism. In addition, transcriptome analysis also showed that K321 can enhance plant resistance to AVC by inducing ISR-related hormones and MAPK signaling, and application of K321 significantly induced the transcription of plant growthrelated genes. In summary, an excellent biocontrol strain has been discovered that can prevent AVC by inducing apple ISR and directly killing V. mali. This study indicated the great potential of P. thivervalensis K321 for use as a biological agent for the control of AVC.

期刊论文 2024-09-01 DOI: 10.1016/j.pestbp.2024.106095 ISSN: 0048-3575
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共19条,2页