Snow-covered regions are the main source of reflection of incident shortwave radiation on the Earth's surface. The deposition of light-absorbing particles on these regions increases the capacity of snow to absorb radiation and decreases surface snow albedo, which intensifies the radiative forcing, leading to accelerated snowmelt and modifications of the hydrologic cycle. In this work, the changes in surface snow albedo and radiative forcing were investigated, induced by light-absorbing particles in the Upper Aconcagua River Basin (Chilean Central Andes) using remote sensing satellite data (MODIS), in situ spectral snow albedo measurements, and the incident shortwave radiation during the austral winter months (May to August) for the 2004-2016 period. To estimate the changes in snow albedo and radiative forcing, two spectral ranges were defined: (i) an enclosed range between 841 and 876 nm, which isolates the effects of black carbon, an important light-absorbing particle derived from anthropogenic activities, and (ii) a broadband range between 300 and 2500 nm. The results indicate that percent variations in snow albedo in the enclosed range are higher than in the broadband range, regardless of the total amount of radiation received, which may be attributed to the presence of light-absorbing particles, as these particles have a greater impact on surface snow albedo at wavelengths in the enclosed band than in the broadband band.
This article investigates the snow albedo changes in Colombian tropical glaciers, namely, Sierra Nevada de Santa Marta (SNSM), Sierra Nevada del Cocuy (NSC), Nevado del Ruiz (NDR), Nevado Santa Isabel (NDS), Nevado del Tolima (NDT), and Nevado del Huila (NDH). They are associated with the possible mineral dust deposition from the Sahara Desert during the June and July months using snow albedo (SA), snow cover (SC), and land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Terra and Aqua satellites. And mineral dust (MD) from The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), both of them during 2000-2020. Results show the largest snow albedo reductions were observed at 39.39%, 32.1%, and 30.58% in SNC, SNSM, and NDR, respectively. Meanwhile, a multiple correlation showed that the glaciers where MD contributed the most to SA behavior were 35.4%, 24%, and 21.4% in NDS, NDC, and NDR. Results also display an increasing trend of dust deposition on Colombian tropical glaciers between 2.81 x 10-3 & mu;g & BULL;m-2 & BULL;year-1 and 6.58 x 10-3 & mu;g & BULL;m-2 & BULL;year-1. The results may help recognize the influence of Saharan dust on reducing snow albedo in tropical glaciers in Colombia. The findings from this study also have the potential to be utilized as input for both regional and global climate models. This could enhance our comprehension of how tropical glaciers are impacted by climate change.
Light-absorbing particles (LAPs) deposited on snow can significantly reduce surface albedo and contribute to positive radiative forcing. This study firstly estimated and attributed the spatio-temporal variability in the radiative forcing (RF) of LAPs in snow over the northern hemisphere during the snow-covered period 2003-2018 by employing Moderate Resolution Imaging Spectroradiometer (MODIS) data, coupled with snow and atmospheric radiative transfer modelling. In general, the RF for the northern hemisphere shows a large spatial variability over the whole snow-covered areas and periods, with the highest value (12.7 W m(-2)) in northeastern China (NEC) and the lowest (1.9 W m(-2)) in Greenland (GRL). The concentration of LAPs in snow is the dominant contributor to spatial variability in RF in spring (similar to 73%) while the joint spatial contributions of snow water equivalent (SWE) and solar irradiance (SI) are the most important (>50%) in winter. The average northern hemisphere RF gradually increases from 2.1 W m(-2) in December to 4.1 W m(-2) in May and the high-value area shifts gradually northwards from mid-altitude to high-latitude over the same period, which is primarily due to the seasonal variability of SI (similar to 58%). More interestingly, our data reveal a significant decrease in RF over high-latitude Eurasia (HEUA) of -0.04 W m(-2) a(-1) and northeastern China (NEC) of -0.14 W m(-2) a(-1) from 2003 to 2018. By employing a sensitivity test, we find the concurrent decline in the concentration of LAPs in snow accounted for the primary responsibility for the decrease in RF over these two areas, which is further confirmed by in situ observations.
This study reports for the first time the content of trace elements and light-absorbing particles (LAPs) in snow samples collected from a Peruvian glacier (Huaytapallana). The sampling campaign was carried out monthly from November 2015 to March 2019. The trace elements content was quantified by inductively coupled plasma mass spectrometry, while LAPs were analyzed using the light absorption heating method. The chemical composition dataset was assessed by descriptive statistics and t-test for assessing dry season and wet season differences. In addition, enrichment factor (EF) and hierarchical cluster analysis (HCA) were employed to identify possible emission sources. The snow, ice, and aerosol radiative (SNICAR) model was used to measure the effect of LAPs on snow albedo and radiative forcing (RF). Based on analysis of EF and HCA, it was shown that Al, Ti, Si, Co, Ce, Sr, Mn, Mg, Ba and Na have mainly natural sources; K, Ca, Fe, Cu, Pb and As have a mixture of natural and anthropogenic sources, and Zn has anthropogenic source. SNICAR model results indicated that LAPs reduced the snow albedo by up 4.5 % in the dry season with RF values as high as 33 W/m(2). Therefore, we conclude that the presence of these particles substantially increases melt or sublimation rates of Peruvian glaciers.
Depositions of light-absorbing particles (LAPs), such as black carbon (BC) and dust, on the snow surface modulate the snow albedo; therefore, they are considered key factors of snow-atmosphere interaction in the present-day climate system. However, their detailed roles have not yet been fully elucidated, mainly due to the lack of in-situ measurements. Here, we develop a new model chain NHM-Chem-SMAP, which is composed of a detailed regional meteorology-chemistry model and a multilayered physical snowpack model, and evaluate it using LAPs concentrations data measured at Sapporo, Japan during the 2011-2012 winter. NHM-Chem-SMAP successfully reproduces the in-situ measured seasonal variations in the mass concentrations of BC and dust in the surface snowpack. Furthermore, we find that LAPs from domestic and foreign sources played a role in shortening the snow cover duration by 5 and 10 days, respectively, compared to the completely pure snow condition.