共检索到 3

Changing precipitation patterns and global warming have greatly changed winter snow cover, which can affect litter decomposition process by altering soil microenvironment or microbial biomass and activity. However, it remains unknown how and to what extent snow cover affects litter decomposition during winter and over longer periods of time. Here, we conducted a meta-analysis to synthesize litter decomposition studies under different levels of snow cover. Overall, deepened snow significantly enhanced litter decomposition rate and mass loss by 17% and 3%, respectively. Deepened snow enhanced litter carbon loss by 7% but did not impact the loss of litter nitrogen or phosphorus. Deepened snow increased soil temperature, decreased the frequency of freeze-thaw cycles, and stimulated microbial biomass carbon and bacterial biomass during winter, but had no effect on these parameters in summer. The promoting effect of deepened snow cover on litter decomposition in winter is mainly due to its positive effect on microbial decomposition by increasing soil temperature and reducing freezethaw cycles exceeded its negative effect on physical fragmentation of litter by reducing freeze-thaw cycles. Our findings indicate that the changes in winter snow cover under global change scenarios can greatly impact winter litter decomposition and the associated carbon cycling, which should be taken into consideration when assessing the global carbon budget in modeling.

2024-06-01 Web of Science

Litter decomposition represents a major path for atmospheric carbon influx into Arctic soils, thereby controlling below-ground carbon accumulation. Yet, little is known about how tundra litter decomposition varies with microenvironmental conditions, hindering accurate projections of tundra soil carbon dynamics with future climate change. Over 14 months, we measured landscape-scale decomposition of two contrasting standard litter types (Green tea and Rooibos tea) in 90 plots covering gradients of micro-climate and -topography, vegetation cover and traits, and soil characteristics in Western Greenland. We used the tea bag index (TBI) protocol to estimate relative variation in litter mass loss, decomposition rate (k) and stabilisation factor (S) across space, and structural equation modelling (SEM) to identify relationships among environmental factors and decomposition. Contrasting our expectations, microenvironmental factors explained little of the observed variation in both litter mass loss, as well as k and S, suggesting that the variables included in our study were not the major controls of decomposer activity in the soil across the studied tundra landscape. We use these unexpected findings of our study combined with findings from the current literature to discuss future avenues for improving our understanding of the drivers of tundra decomposition and, ultimately, carbon cycling across the warming Arctic.

2024-03-01 Web of Science

Accompanying the seasonal soil freeze-thaw cycle, microbial decomposition of litter exhibited different dynamic response to various snow thicknesses. In this study, we used real-time qPCR to investigate the abundance of bacteria, archaea, ammonia-oxidizing archaea (AOA) and bacteria (AOB), and the amoA gene transcripts, during the decomposition of dwarf bamboo (Fargesia nitida) litter under different snow patches at various snow-cover stages in an alpine forest on the eastern Tibetan Plateau in China. The effects of snow thickness were significant, with thicker snow patches resulting in higher microbial abundance and the amoA gene transcripts, while the degree of the effects were different. Compared with AOB, AOA were more abundant on the majority of sampling dates during the freeze-thaw period, and as well as their amoA gene transcripts. AOA are more persistent and abundant than AOB, and the higher AOA/AOB ratios were observed clearly in shrub litter and continued to decrease as the snow thickness increased, meanwhile gradually increased under uniform snow thickness over time. Our results suggested that the reduced seasonal snow cover and shortened freeze-thaw cycle periods caused by winter warming would significantly affect the ammonia oxidizers particularly tied to the ammonia oxidation process, and then could contribute to N cycle as related to litter in alpine forest ecosystems.

2016-07-01 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页