In highway construction across the southeastern coastal regions of China, granite residual soil is widely used as subgrade fill material in pavement engineering. Its mechanical behaviour under dynamic loads warrants in-depth investigation. Dynamic events such as vehicular traffic and earthquakes are complex, involving multidirectional loads. The dynamic behaviour of soil under bidirectional cyclic loading differs significantly from that under cyclic loading in one direction. A large-scale bidirectional cyclic direct shear apparatus was utilised to carry on a series of horizontal cyclic direct shear tests on granite residual soil with water contents of 14% and 24% at different normal stress amplitudes (sigma a) (0, 100, 200 kPa). Based on these tests, discrete element method (DEM) models were developed to simulate the laboratory tests. The test results revealed that cyclic normal stress increases dynamic shear strength during forward shear but reduces it during reverse shear. The energy dissipation capacity increases with rising sigma a. The dynamic behaviour of granite residual soil is more significantly affected by cyclic normal stress when the water content is higher. The DEM simulation results indicated that as cyclic shearing progresses, the location of the maximum principal stress (sigma 1) shifts from the top of the specimen toward the shear interface. The distribution of the angle between sigma 1 and the x-axis, as well as sigma 1 and the z-axis, transitions from 'M' distribution to 'Arch' distribution. With increasing sigma a, during forward shear, the magnitude of the maximum principal stress increases, and the orientation of sigma 1 rotates toward the normal direction. Conversely, during reverse shear, the magnitude of the maximum principal stress decreases, and its orientation shifts toward the horizontal shear direction. The material fabric anisotropy coefficient decreases with increasing sigma a, while the anisotropy orientation increases with increasing normal stress.
As the increasing demand for deep mineral resource extraction and the construction of deep vertical shafts by the artificial ground freezing method, the stability and safety of shaft that traverse thick alluvial depend significantly on their interaction with the surrounding deep frozen soil medium. Such interaction is directly conditioned by the mechanical properties of the deep frozen soil. To precisely capture these in-situ mechanical properties, the mechanical parameters tests using remodeled frozen specimens cannot ignore the disparities in consolidation history, stress environment and formation conditions between the deep and shallow soils. This study performs a series of long-term high-pressure K0 consolidation (where K0 represents the static earth pressure coefficient, describing the ratio of horizontal to vertical stress under zero lateral strain conditions), freezing under sustained load and unloading triaxial shear tests utilizing remodeled deep clay. This study presents the response of unloading strength and damage properties under varying consolidation stresses, durations, and freezing temperatures. The unloading strength increases sharply and then stabilizes with consolidation time. The unloading strength shows an approximate linear positive correlation with the consolidation stress, while a negative correlation with the freezing temperature. The strengthening rate of the unloading strength due to freezing temperature tends to decrease with increasing consolidation time. Additionally, an improved damage constitutive model was proposed and validated by incorporating the initial K0 stress state and a Weibull-based assumption for damage elements. Based on the back propagation (BP) neural network, a prediction method for the stress-strain curve was offered according to the consolidation stress level, initial stress state, and temperature. These results can provide references for improving the mechanical testing methods of deep frozen clay and revealing differences in mechanical properties between deep and shallow soils.
Soft soil subgrades often present significant geotechnical challenges under cyclic loading conditions associated with major infrastructure developments. Moreover, there has been a growing interest in employing various recycled tire derivatives in civil engineering projects in recent years. To address these challenges sustainably, this study investigates the performance of granular piles incorporating recycled tire chips as a partial replacement for conventional aggregates. The objective is to evaluate the cyclic behavior of these tire chip-aggregate mixtures and determining the optimum mix for enhancing soft soil performance. A series of laboratory-scale, stress-controlled cyclic loading tests were conducted on granular piles encased with combi-grid under end-bearing conditions. The granular piles were constructed using five volumetric proportions of (tire chips: aggregates) (%) of 0:100, 25:75, 50:50, 75:25, and 100:0. The tests were performed with a cyclic loading amplitude (qcy) of 85 kPa and a frequency (fcy) of 1 Hz. Key performance indicators such as normalized cyclic induced settlement (Sc/Dp), normalized excess pore water pressure in soil bed (Pexc/Su), and pile-soil stress distribution in terms of stress concentration ratio (n) were analyzed to assess the effectiveness of the different mixtures. Results indicate that the ordinary granular pile (OGP) with (25 % tire chips + 75 % aggregates) offers an optimal balance between performance and sustainability. This mixture reduced cyclic-induced settlement by 86.7 % compared to the OGP with (0 % TC + 100 % AG), with only marginal losses in performance (12.3 % increase in settlement and 2.8 % reduction in stress transfer efficiency). Additionally, the use of combi-grid encasement significantly improved the overall performance of all granular pile configurations, enhancing stress concentration and reducing both settlement and excess pore water pressure. These findings demonstrate the viability of using recycled tire chips as a sustainable alternative in granular piles, offering both environmental and engineering benefits for soft soil improvement under cyclic loading.
A group of earthquakes typically consists of a mainshock followed by multiple aftershocks. Exploration of the dynamic behaviors of soil subjected to sequential earthquake loading is crucial. In this paper, a series of cyclic simple shear tests were performed on the undisturbed soft clay under different cyclic stress amplitudes and reconsolidation degrees. The equivalent seismic shear stress was calculated based on the seismic intensity and soil buried depth. Furthermore, reconsolidation was conducted at the loading interval to investigate the influence of seismic history. An empirical model for predicting the variation of the accumulative dissipated energy with the number of cycles was established. The energy dissipation principle was employed to investigate the evolution of cyclic shear strain and equivalent pore pressure. The findings suggested that as the cyclic stress amplitude increased, incremental damage caused by the aftershock loading to the soil skeleton structure became more severe. This was manifested as the progressive increase in deformation and the rapid accumulation of dissipated energy. Concurrently, the reconsolidation process reduced the extent of the energy dissipation by inhibiting misalignment and slippage among soil particles, thereby enhancing the resistance of the soft clay to subsequent dynamic loading.
Post-grouting pile technology has gained extensive application in collapsible loess regions through the injection of slurry to compress and consolidate the soil at the pile base, thereby forming an enlarged base that enhances the foundation's bearing capacity and reduces settlement. Despite the prevalent unsaturated state of loess in most scenarios, the conventional design methodologies for piles in collapsible loess predominantly rely on saturated soil mechanics principles. The infiltration of water can significantly deteriorate the mechanical properties of loess due to the reduction in matric suction and the occurrence of collapsible deformation, leading to a substantial degradation in the bearing behavior of piles. To explore the variations in load transfer mechanisms of post-grouting piles in collapsible loess under conditions of intense precipitation, a comprehensive large-scale model test was conducted. The findings revealed that the post-grouting technique effectively mitigates the adverse effects of negative pile shaft friction in saturated zones on the pile's bearing behavior. Furthermore, the failure criteria for piles may shift from the shear failure of the base soil to excessive pile settlement. By incorporating principles of unsaturated soil mechanics, modified load transfer curves were developed to describe the mobilization of both pile shaft friction and base resistance. These curves facilitate the extension of the traditional load transfer method to post-grouting piles in collapsible soils under extreme weather conditions. The proposed revised load transfer method is characterized by its simplicity, requiring only a few soil indices and mechanical properties, making it highly applicable in engineering practice.
A comprehensive series of tests, including dynamic triaxial, monotonic triaxial and unconfined compressive strength (UCS) tests, were carried out on reconstituted landfill waste material buried for over twenty years in a closed landfill site in Sydney, Australia. Waste materials collected from the landfill site were treated with varying percentages of cement, and both treated and untreated specimens were investigated to evaluate the influence of cement treatment. The study examined the dynamic properties of cement-treated landfill waste, including cumulative plastic deformation, resilient modulus, and damping ratio, and also analysed the impact of cyclic loading on post-cyclic shear strength in comparison to pre-cyclic shear strength. The UCS tests and monotonic triaxial tests demonstrated that untreated specimens subjected to monotonic loading exhibited a progressive increase in strength with rising axial strain, whereas cement-treated specimens reached a peak strength before experiencing a decline. During cyclic loading, with the inclusion of cement, a significant reduction in cumulative plastic deformation and damping ratio was observed, and this reduction was further enhanced with increasing cement content. Conversely, the resilient modulus showed substantial improvement with the addition of cement, and this enhancement was further amplified with increasing cement content. The formation of cementation bonds between particles curtails particle movement within the landfill waste material matrix and prevents interparticle sliding during cyclic loading, leading to lower plastic strains and damping ratio while increasing resilient modulus. Post-cyclic monotonic testing revealed that cyclic loading caused the partial breakage of the cementation bonds, resulting in reduced shear strength. This reduction was higher on samples treated with lower cement content. Overall, the findings of the research offer crucial insights into the possibility of cement-treated landfill waste as a railway subgrade, laying the groundwork for informed design decisions in developing transport infrastructure over closed landfill sites while using landfill waste materials available on site.
Pile foundations are frequently used in the construction of bridges, offshore platforms, and offshore wind turbines, which are often subjected to complex lateral cyclic loading from wind, wave, or current. These lateral loads usually come from different directions or constantly change their direction, which is ignored by most existing calculation models. A two-dimensional p -y model is proposed in this study for the lateral response of the pile subjected to multi-directional cyclic loading in sand. Without introducing additional parameters, the p -y response in two dimensions is coupled by developing the model within the framework of the bounding surface p -y model. Combined with the collapse and recompression model, the effect of sand collapse around the pile during cyclic loading is considered to approach reality. The pile lateral displacement and soil resistance are obtained in incremental form using the finite difference method in the two-dimensional case. By comparing with the model test results, it is demonstrated that the proposed model is able to reasonably predict the lateral cyclic response of the pile as well as the effects of multi-directional cyclic loading. The distribution and variation characteristics of the soil resistance are further discussed by analyzing the results calculated by the proposed model.
The influence of seismic history on the liquefaction resistance of saturated sand is a complex process that remains incompletely understood. Large earthquakes often consist of foreshocks, mainshocks, and aftershocks with varying magnitudes and irregular time intervals. In this context, sandy soils undergo two interdependent processes: (i) partial excess pore water pressure (EPWP) generation during foreshocks or moderate mainshocks, where seismic loadings elevate EPWP without causing full liquefaction and (ii) incomplete EPWP dissipation between seismic events due to restricted drainage. These processes leave behind persistent residual EPWP, reducing the liquefaction resistance during subsequent shaking. A series of cyclic triaxial tests simulating these mechanisms revealed that liquefaction resistance increases when the EPWP ratio r(u) < 0.6-0.8 (peaking at r(u) similar to 0.4) but decreases sharply at higher r(u). Crucially, EPWP generation during seismic loading plays a dominant role in resistance evolution compared to reconsolidation effects. Threshold lines (TLs) mapping r(u), the reconsolidation ratio (RR), and peak resistance interval (the range of r(u) where the peak liquefaction resistance is located) indicates that resistance decreases above TLs and increases below them, with higher cyclic stress ratios (CSR) weakening these effects. These findings provide a unified framework for assessing liquefaction risks under realistic multi-stage seismic scenarios.
Open-ended pipe piles (OEPPs) are widely used in offshore foundations, yet accurately predicting their driving responses remains challenging due to soil plug complexities. Existing pile driving analysis models inadequately characterize the effects of soil plug, potentially leading to driving problems such as hammer refusal, pile running, and structural damage. This paper proposes an effective soil plug (ESP) model for OEPP driving analysis. The ESP model considers the effective range of soil plug, which exerts internal resistance that increases exponentially with depth while the beyond of effective range contributes only mass inertia. It also accounts for the relative slippage at the pile-soil plug interface. A differential iterative method is developed to solve the ESP model. Subsequently, investigations including the model validation and parameter analysis are conducted. Model validations against existing models and field measurements confirms the reliability of the ESP model. Parameters sensitivity analysis reveals the importance of soil plug length and distribution type of internal resistance on the pile dynamic responses. In addition, if soil plug slippage occurs, the displacement peak of soil plug increases with depth rather than one-dimensional wave attenuation. Furthermore, contrary to previous assumptions of continuous slippage, the soil plug experiences a discontinuous jump-sliding mode under long-duration impact loading. These findings provide theoretical basis for OEPP driving simulation and interpretations of high-strain dynamic test.
Constitutive models of sands play an essential role in analysing the foundation responses to cyclic loads, such as seismic, traffic and wave loads. In general, sands exhibit distinctly different mechanical behaviours under monotonic, regular and irregular cyclic loads. To describe these complex mechanical behaviours of sands, it is necessary to establish appropriate constitutive models. This study first analyses the features of hysteretic stressstrain relation of sands in some detail. It is found that there exists a largest hysteretic loop when sands are sufficiently sheared in two opposite directions, and the shear stiffness at a stress-reversal point primarily depends on the degree of stiffness degradation in the last loading or unloading process. Secondly, a stress-reversal method is proposed to effectively reproduce these features. This method provides a new formulation of the hysteretic stress-strain curves, and employs a newly defined scalar quantity, called the small strain stiffness factor, to determine the shear stiffness at an arbitrary stress-reversal state. Thirdly, within the frameworks of elastoplastic theory and the critical state soil mechanics, an elastoplastic stress-reversal surface model is developed for sands. For a monotonic loading process, a double-parameter hardening rule is proposed to account for the coupled compression-shear hardening mechanism. For a cyclic loading process, a new kinematic hardening rule of the loading surface is elaborately designed in stress space, which can be conveniently incorporated with the stressreversal method. Finally, the stress-reversal surface model is used to simulate some laboratory triaxial tests on two sands, including monotonic loading tests along conventional and special stress paths, as well as drained cyclic tests with regular and irregular shearing amplitudes. A more systematic comparison between the model simulations and relevant test data validates the rationality and capability of the model, demonstrating its distinctive performance under irregular cyclic loading condition.