共检索到 1

In seasonally frozen areas, freezing of topsoil is detrimental to the seismic response of bridge substructures and may cause bridge damage. In order to counter this problem, this paper proposes the use of a temperature-insensitive composite material (PolyBRuS) to replace the soil around the with the aim of preventing seismic damage brought about by the seasonally frozen soil, which is named as the replacement method. Firstly, a three-dimensional finite element model was built based on the model tests, and the results of the model tests were used for verification and calibration. Secondly, based on the finite element model, a time-history analysis of the seismic response of the bridge substructure was carried out to explore the nonlinear seismic response of the bridge foundation in different seasons and with or without replacement conditions. The result of numerical simulations showed that frozen soil significantly reduced the extent of the plastic zone of the soil under seismic loading and affected the seismic response of the bridge substructure, including an increase of foundation acceleration (19% increase), a decrease of foundation displacement (32% decrease), and an increase of foundation bending moment (10% increase). Notably, it can be found that the replacement method can reduce the seismic acceleration, increased column deformation (21% increase), and reduced column bending moment of the winter bridge foundations (9% decrease), consequently reducing the risk of seismic damage to the bridge substructure. Meanwhile, the compressive stress and compressive strain characteristics of the PolyBRuS material on the column side under seismic action are similar to those of unfrozen soil in summer. Above all, the adverse effects of surface freezing on bridge substructures can be effectively mitigated by the replacement method, and the bridge foundations will have similar seismic responses in winter and summer. This achievement has practical application prospects and is expected to provide a new seismic strategy for bridge engineering in seasonally frozen soil areas.

期刊论文 2025-05-01 DOI: 10.12989/eas.2025.28.5.399 ISSN: 2092-7614
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页