共检索到 2

The Yangtze River and the Huang River are the two largest rivers in China. Annual runoff ratios (runoff/precipitation, denoted as RR) of the head regions of these two basins (HYR and HHR, respectively) have significantly decreased over the past several decades, closely related to changes in water storage capacity (WSC) and terrestrial water storage (TWS). However, such effects have rarely been quantified due to limitations associated with complicated arctic hydrological processes and the absence of long-term reliable TWS data. In this study, a TWS reconstruction dataset (TWSrec) was validated, and demonstrated good performance in capturing TWS variations derived from the Gravity Recovery and Climate Experiment (GRACE) and in the terrestrial water budget for these two head regions. Long-term (1980-2015) changes in TWS and WSC were then detected and their effects on RR were quantified through trend detection, change point analysis, and path analysis. Results showed that TWS increased significantly with a rate of 27.6 mm/10 yr and 19.8 mm/10 yr at HYR and HHR, respectively. These increases were mainly caused by wetting (increases in precipitation) or soil moisture increases from the TWS component perspective. WSC (represented as the ratio of TWS to precipitation) gradually enlarged in response to continuous climate warming. RR decreased significantly with rates of 2.0%/10 yr at HYR and 3.6%/10 yr at HHR, attributed to the increased evaporation ratio (similar to 80%) and increased WSC (similar to 20%) in both head regions. Further analysis suggested that permafrost degradation under climate warming could increase WSC. These results demonstrate that climate change has resulted in unstable terrestrial water storage at HYR and HHR, and that increases in WSC due to permafrost degradation play an important role in accurately simulating runoff in the Tibetan Plateau and other permafrost-degradation regions.

期刊论文 2021-10-01 DOI: 10.1016/j.jhydrol.2021.126668 ISSN: 0022-1694

How the greening of Arctic landscapes manifests as a change in ecosystem structure and function remains largely unknown. This study investigates the likely implications of plant community change on ecosystem function in tundra near Barrow, Alaska. We use structural data from marked plots, established in 1972 and resampled in 1999, 2008 and 2010 to assess plant community change. Ecosystem functional studies were made close to peak growing season in 2008 and 2010 on destructive plots adjacent to marked plots and included measurement of land-atmosphere CH4 and CO2 exchange, hyperspectral reflectance, albedo, water table height, soil moisture, and plant species cover and abundance. Species cover and abundance data from marked and destructive plots were analyzed together using non-metric multi-dimensional scaling (NMS) ordination. NMS axis scores from destructive plots were used to krig ecosystem function variables in ordination space and produce surface plots from which time series of functional attributes for resampled plots were derived. Generally, the greatest functional change was found in aquatic and wet plant communities, where productivity varied and soil moisture increased, increasing methane efflux. Functional change was minimal in moist and dry communities, which experienced a general decrease in soil moisture availability and appeared overall to be functionally more stable through time. Findings suggest that the Barrow landscape could have become less productive and less responsive to change and disturbance over the past few decades. This study is a contribution to the International Polar Year-Back to the Future Project (512).

期刊论文 2012-01-01 DOI: 10.1088/1748-9326/7/1/015507 ISSN: 1748-9326
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页