共检索到 3

Black carbon (BC) is one of the major aerosol components with relatively high implications on climatic patterns through its radiative forcing (RF). South Asia has recently experienced an increased concentration of pollution; however, relatively fewer studies have been carried out on long-term assessment of BC and its implications. The present study analyzed the long-term concentration of BC in selected urban locations over South Asia using the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). The study employed statistical analysis, including linear regression techniques, to assess the long-term concentration of BC. The results show that a rapid increase of BC is observed over most urban locations of South Asia with the predominance in winter and hence requires strict regional control measures to reduce the excess concentration of BC in the atmosphere. High concentration of BC in winter is attributed to anthropogenic activities and changes in meteorological conditions that enhance the accumulation of pollutants in the atmosphere. The relationship of BC with cloud top temperature and cloud effective radius demonstrates the direct and indirect effect of BC on cloud properties in this region. The RF results reveal that aerosol optical depth has positive aerosol RF in the atmosphere and negative RF at the top of the atmosphere (TOA) as well as at the bottom of the atmosphere (BOA). Negative RF at the TOA indicates less forcing efficiency due to fewer BC aerosols. On the other hand, averaging aerosol RF within the atmosphere reveals positive forcing, which suggests the efficiency force exerted by BC aerosols after absorbing solar radiation.

期刊论文 2024-12-01 DOI: 10.1007/s13351-024-4046-5 ISSN: 2095-6037

Due to U.S. air pollution regulations, aerosol and precursor emissions have decreased during recent decades, while changes in emissions in other regions of the world also influence U.S. aerosol trends through long-range transport. We examine here the relative roles of these domestic and foreign emission changes on aerosol concentrations and direct radiative forcing at the top of the atmosphere over the continental United States. Long-term (1980-2014) trends and aerosol source apportionment are quantified in this study using a global aerosol-climate model equipped with an explicit aerosol source tagging technique. Due to U.S. emission control policies, the annual mean near-surface concentration of particles, consisting of sulfate, black carbon, and primary organic aerosol, decreases by about -1.1 (+/- 0.1)/-1.4 (+/- 0.1) mu g/m(3) in western United States and -3.3 (+/- 0.2)/-2.9 (+/- 0.2) mu g/m(3) in eastern United States during 2010-2014, as compared to those in 1980-1984. Meanwhile, decreases in U.S. emissions lead to a warming of +0.48 (+/- 0.03)/+0.46 (+/- 0.03)W/m(2) in western United States and +1.41 (+/- 0.07)/+1.32 (+/- 0.09)W/m(2) in eastern United States through changes in aerosol direct radiative forcing. Increases in emissions from East Asia generally have a modest impact on U.S. air quality but mitigated the warming effect induced by reductions in U.S. emissions by 25% in western United States and 7% in eastern United States. As U.S. domestic aerosol and precursor emissions continue to decrease, foreign emissions may become increasingly important to radiative forcing over the United States.

期刊论文 2018-06-01 DOI: 10.1029/2018EF000859

Using data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) program, Bahadur et al. (2011) report that average fine particulate light absorbing carbon (LAC) concentrations in California decreased by about 50% from 0.46 mu g m(-3) in 1989 to 0.24 mu g m(-3) in 2008. They attribute most of the LAC decline in California to reductions in the state's diesel emissions. These findings are encouraging, but in this comment we call attention to a significant methodological issue that can arise in any long-term trends analysis using IMPROVE data. In the Bahadur et al. analysis, LAC data from eighteen remote monitoring sites were aggregated with data from three urban sites that only operated for 1-8 years. The large absolute decrease of 0.22 mu g m(-3) they reported in the statewide California average was largely driven by one urban site, South Lake Tahoe (Tahoe), which was dropped from the network in mid-1997. LAC concentrations at Tahoe were an order of magnitude higher than those at nearby Bliss State Park indicative of large local source contributions. The exclusion of the three locally influenced urban sites substantially reduces the magnitude of the decreasing LAC trends shown in Bahadur et al., though this does not necessarily invalidate the paper's conclusion that LAC is broadly decreasing and diesel emission controls are likely to be responsible for part of this decrease. Control of emissions from wood-burning stoves may also have contributed to decreases in LAC and other particulate compounds; like diesel emission controls, this too is an important regulatory success. Published by Elsevier Ltd.

期刊论文 2011-08-01 DOI: 10.1016/j.atmosenv.2011.04.042 ISSN: 1352-2310
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页