共检索到 14

Ice records provide a qualitative rather than a quantitative indication of the trend of climate change. Using the bulk aerodynamic method and degree day model, this study quantified ice mass loss attributable to sublimation/evaporation (S/E) and meltwater on the basis of integrated observations (1960-2006) of glacier-related and atmospheric variables in the northeastern Tibetan Plateau. During 1961-2005, the average annual mass loss in the ice core was 95.33 +/- 20.56 mm w.e. (minimum: 78.97 mm w.e. in 1967, maximum: 146.67 mm w.e. in 2001), while the average ratio of the revised annual ice accumulation was 21.2 +/- 7.7% (minimum: 11.0% in 1992, maximum 44.8% in 2000). A quantitative formula expressing the relationship between S/E and air temperature at the monthly scale was established, which could be extended to estimation of S/E changes of other glaciers in other regions. The elevation effect on alpine precipitation determined using revised ice accumulation and instrumental data was found remarkable. This work established a method for quantitative assessment of the temporal variation in ice core mass loss, and advanced the reconstruction of long-term precipitation at high elevations. Importantly, the formula established for reconstruction of S/E from temperature time series data could be used in other regions.

期刊论文 2025-07-01 DOI: http://dx.doi.org/10.1017/jog.2023.51 ISSN: 0022-1430

Study area: Urumqi Glacier No.1 Catchment in central Asia. Study focus: Chemical weathering at the basin scale is important process for understanding the feedback mechanism of the carbon cycle and climate change. This study mainly used the actual sampling data in 2013, 2014, and 2016, and the first collection from the literature in same catchment to analyze the seasonal and interannual characteristics of meltwater runoff, as well as cation denudation rate (CDR). New hydrological insights for the study region: The dominant ions of meltwater runoff are Ca2 +, HCO3- , and SO42-, which are mainly derived from calcite dissolution, feldspar weathering and sulfide oxidation. Meltwater runoff at Urumqi Glacier No.1 has higher concentrations of Ca2+ and lower concentrations of HCO3- than that from glaciers in Asia. Compared to 2006 and 2007, cation concentrations increased in 2013 and 2014, while SO42- concentration decreased. The daily ion concentration has seasonality and exhibits a negative relationship with discharge. Daily CDR is positively related to discharge and temperature. Annual CDR values range from 12.34 to 19.04 t/ km2/yr in 2013, 2014, and 2016, which are 1-1.7 times higher than those in 2006 and 2007 and higher than some glaciers in Asia. These results indicate that chemical weathering rate in the Urumqi Glacier No.1 catchment has increased with climate warming, and it is stronger than that of some glaciers in the Tibetan Plateau and surroundings.

期刊论文 2025-02-01 DOI: http://dx.doi.org/10.1016/j.ejrh.2024.102107

Study area: Urumqi Glacier No.1 Catchment in central Asia. Study focus: Chemical weathering at the basin scale is important process for understanding the feedback mechanism of the carbon cycle and climate change. This study mainly used the actual sampling data in 2013, 2014, and 2016, and the first collection from the literature in same catchment to analyze the seasonal and interannual characteristics of meltwater runoff, as well as cation denudation rate (CDR). New hydrological insights for the study region: The dominant ions of meltwater runoff are Ca2 +, HCO3- , and SO42-, which are mainly derived from calcite dissolution, feldspar weathering and sulfide oxidation. Meltwater runoff at Urumqi Glacier No.1 has higher concentrations of Ca2+ and lower concentrations of HCO3- than that from glaciers in Asia. Compared to 2006 and 2007, cation concentrations increased in 2013 and 2014, while SO42- concentration decreased. The daily ion concentration has seasonality and exhibits a negative relationship with discharge. Daily CDR is positively related to discharge and temperature. Annual CDR values range from 12.34 to 19.04 t/ km2/yr in 2013, 2014, and 2016, which are 1-1.7 times higher than those in 2006 and 2007 and higher than some glaciers in Asia. These results indicate that chemical weathering rate in the Urumqi Glacier No.1 catchment has increased with climate warming, and it is stronger than that of some glaciers in the Tibetan Plateau and surroundings.

期刊论文 2025-02-01 DOI: http://dx.doi.org/10.1016/j.ejrh.2024.102107

Study region: The source area of the Yangtze River, a typical catchment in the cryosphere on the Tibet Plateau, was used to develop and validate a distributed hydrothermal coupling model. Study focus: Climate change has caused significant changes in hydrological processes in the cryosphere, and related research has become hot topic. The source area of the Yangtze River (SAYR) is a key catchment for studies of hydrological processes in the cryosphere, which contains widespread glacier, snow, and permafrost. However, the current hydrological modeling of the SAYR rarely depicts the process of glacier/snow and permafrost runoff from the perspective of coupled water and heat transfer, resulting in distortion of simulations of hydrological processes. Therefore, we developed a distributed hydrothermal coupling model, namely WEP-SAYR, based on the WEP-L (Water and energy transfer process in large river basins) model by introducing modules for glacier and snow melt and permafrost freezing and thawing. New hydrological insights for the region: In the WEP-SAYR model, the soil hydrothermal transfer equations were improved, and a freezing point equation for permafrost was introduced. In addition, the glacier and snow meltwater processes were described using the temperature index model. Compared to previously applied models, the WEP-SAYR portrays in more detail glacier/ snow melting, dynamic changes in permafrost water and heat coupling, and runoff dynamics, with physically meaningful and easily accessible model parameters. The model can describe the soil temperature and moisture changes in soil layers at different depths from 0 to 140 cm. Moreover, the model has a good accuracy in simulating the daily/monthly runoff and evaporation. The Nash-Sutcliffe efficiency exceeded 0.75, and the relative error was controlled within +/- 20 %. The results showed that the WEP-SAYR model balances the efficiency of hydrological simulation in large scale catchments and the accurate portrayal of the cryosphere elements, which provides a reference for hydrological analysis of other catchments in the cryosphere.

期刊论文 2024-12-01 DOI: 10.1016/j.ejrh.2024.102057

Ny-& Aring;lesund, located in Arctic Svalbard, is one of the most sensitive areas on Earth to global warming. In recent years, accelerated glacier ablation has become remarkable in Ny-& Aring;lesund. Glacial meltwaters discharge a substantial quantity of materials to the ocean, affecting downstream ecosystems and adjacent oceans. In August 2015, various water samples were taken near Ny-& Aring;lesund, including ice marginal meltwater, proglacial meltwater, supraglacial meltwater, englacial meltwater, and groundwater. Trace metals (Al, Cr, Mn, Fe, Co, Cu, Zn, Cd, and Pb), major ions, alkalinity, pH, dissolved oxygen, water temperature and electric conductivity were also measured. Major ions were mainly controlled by chemical weathering intensity and reaction types, while trace metals were influenced by both chemical weathering and physicochemical control upon their mobility. Indeed, we found that Br & oslash;ggerbreen was dominated by carbonate weathering via carbonation of carbonate, while Austre Lov & eacute;nbreen and Pedersenbreen were dominated by sulfide oxidation coupled with carbonate dissolution with a doubled silicate weathering. The higher enrichment of trace metals in supraglacial meltwater compared to ice marginal and proglacial meltwater suggested anthropogenic pollution from atmospheric deposition. In ice marginal and proglacial meltwater, principal component analysis indicated that trace metals like Cr, Al, Co, Mn and Cd were correlated to chemical weathering. This implies that under accelerated glacier retreat, glacier-derived chemical components are subjected to future changes in weathering types and intensity.

期刊论文 2024-10-01 DOI: 10.1007/s13131-024-2385-9 ISSN: 0253-505X

Observing the isotopic evolution of snow meltwater helps in understanding the process of snow melting but remains a challenge to acquire in the field. In this study, we monitored the melting of two snowpacks near Baishui Glacier No. 1, a typical temperate glacier on the southeastern Tibetan Plateau. We employed a physically based isotope model (PBIM) to calculate the isotopic composition of meltwater draining from natural snowpacks. The initial condition of the PBIM was revised to account for natural conditions, i.e., the initial delta O-18 stratigraphy of snow layers before melting. Simulations revealed that the initial heterogeneity of delta O-18 in snow layers as well as ice-liquid isotopic exchange were responsible for most variations of delta O-18 in snow meltwater, whereas new snow and wind drift could result in sudden changes of the isotopic composition of the meltwater. The fraction of ice involved in the isotopic exchange (f) was the most sensitive parameter for the model output. The initial delta O-18 in the snowpack is mirrored in meltwater in case of smallfand is smoothed with a large exchange fractionf. The other unknown parameter of the PBIM is the dimensionless rate constant of isotopic exchange, which depends on water percolation and initial snow depth. The successful application of the PBIM in the field might not only be useful for understanding snow melting process but might also provide the possibility of predicting the isotopic composition of snow meltwater and improve the accuracy of hydrograph separation.

期刊论文 2023-07-01 DOI: http://dx.doi.org/10.1029/2019WR026423 ISSN: 0043-1397

Snow and glaciers provide water to the densely populated downstream area of the Tarim River Basin, which is an important irrigated agricultural area in China. Cotton is an important cash crop, and meltwater is an important irrigation water source for cotton in this region. In this study, the spatiotemporal dependence of cotton yield on mountain meltwater resources in the subbasins of the Tarim River basin was quantified by the variable infil-tration capacity (VIC) hydrologic model with the degree-day and CROPR models during 1960-2017. The results showed that the changes in meltwater in all subbasins had a significantly increasing trend. Meltwater contri-butions to cotton irrigation and yield varied spatiotemporally. Along the area south of the Tian Shan Mountains, the meltwater contribution to irrigation showed a decreasing trend from west to east, and the highest contri-bution of meltwater to cotton yield occurred in the Weigan River basin, followed by the Aksu River basin and Kaidu River basin. Along the northern Karakoram Mountains, the meltwater contributions to cotton irrigation and yield first decreased and then increased from west to east. In the whole basin, 48.6% of total irrigation withdrawals originated from mountain snow and glacial meltwater and contributed an additional 55.9% to total cotton production during the study period. The results provide important agricultural information for locations where shifts in water availability and demand are projected as a result of socioeconomic growth.

期刊论文 2022-07-01 DOI: http://dx.doi.org/10.1016/j.agwat.2022.107639 ISSN: 0378-3774

Monitoring the variations in terrestrial water storage (TWS) is crucial for understanding the regional hydrological processes, which helps to allocate and manage basin-scale water resources efficiently. In this study, the impacts of climate change, glacier mass loss, and human activities on the variations in TWS of the Qaidam Basin over the period of 2002-2020 were investigated by using Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) data, and other hydrological and meteorological data. The results indicate that TWS anomalies (TWSA) derived from five GRACE solutions experienced significant increasing trends over the study period, with the change rates ranging from 4.85 to 6.90 mm/year (1.37 to 1.95 km(3)/year). The GRACE TWSA averaged from different GRACE solutions exhibited an increase at a rate of 5.83 +/- 0.12 mm/year (1.65 +/- 0.03 km(3)/year). Trends in individual components of TWS indicate that the increase in soil moisture (7.65 mm/year) contributed the most to the variations in TWS. Through comprehensive analysis, it was found that the temporal variations in TWS of the Qaidam Basin were dominated by the variations in precipitation, and the spatial variations in TWS of the Qaidam Basin were mostly driven by the increase in glacier meltwater due to climate warming, particularly in the Narin Gol Basin. In addition, the water consumption associated with human activities had relatively fewer impacts.

期刊论文 2022-05-01 DOI: 10.3390/rs14092186

The terrestrial cryosphere functions to provide critical freshwater and serve societies and ecosystems, driving nature's contributions to people (NCP). This becomes increasingly important for the oasis areas in Northwest China. The cryospheric meltwater is in demand to support the economy and reduce poverty, accompanied by growing requirements to protect the environment. We intend to investigate the contributions of cryospheric meltwater by analyzing the spatial functions and services pertinent to provisioning meltwater in China. Based on the currently available datasets during the 2000s of glaciers, snow cover, and permafrost, spatial clustering was utilized to analyze the contributions at the third-level basin scale. Further assessment is carried out for the exposure of primary, secondary, and tertiary industrial sectors to cryospheric meltwater, which reflects the spatiality of potential services that cryospheric meltwater may provide. In results, we spatially cluster the contribution of cryospheric meltwater into six function zones and twenty-seven sub-zones, in association with the degree of their reliance on glaciers, snow cover, and permafrost. Considering the sector's exposure, we further spatially cluster the contribution areas into eleven service zones concerning the potential service of cryospheric meltwater. Generally, the cryosphere contributes approximately 8.3% of the total water resource in China, with function zones mainly distributed in northeastern China, Qinghai-Tibet Plateau (QTP), and other arid regions of Northwest China with various significance. The overall contribution ratios of the glacier, snow cover, and permafrost to cryospheric meltwater are about 35.6%, 56.5%, and 7.9%, respectively. By looking into the service zones, the cryospheric meltwater mainly contributes to the primary industry in Northwest China and QTP, even though it has less significant effects on all other industrial sectors, while the services to the ecosystem are mainly located in QTP and high mountain regions. The results offer an overarching view on the contributions of cryospheric meltwater in China.

期刊论文 2022-04-01 DOI: http://dx.doi.org/10.1016/j.accre.2021.05.008 ISSN: 1674-9278

Tibetan Plateau (TP) lakes are important water resources, which are experiencing quick expansion in recent decades. Previous researches mainly focus on analyzing the relationship between terrestrial water storage (TWS) change and lake water storage (LWS) change in the total inner TP, it is still lack of researches about the spatial difference and the characteristic of sub-region in the inner TP. In this study, we estimated the area change of 34 lakes by using Landsat images in the northeastern TP during 1976-2013, and LWS change by using the Shuttle Radar Topography Mission (SRTM). The results suggested that LWS had shrunk from 1976 to 1994, and then expanded quickly until 2013. LWS had a serious decrease by 13.6 Gt during 1976-1994, and then it increased quickly by 35.4 Gt during 1994-2013. We estimated TWS change, soil moisture change, and permafrost degradation based on the satellite data and related models during 2003-2013. The results indicated that their changing rates were 1.86 Gt/y, 0.22 Gt/y, and -0.19 Gt/y, respectively. We also calculated the change of groundwater based on the mass balance with a decreasing trend of -0.054 Gt/y. The results suggested that the cause of TWS change was the increase of LWS. We analyzed the cause of lake change according to water balance, and found that the primary cause of lake expansion was the increasing precipitation (80.7%), followed by glacier meltwater (10.3%) and permafrost degradation (9%). The spatial difference between LWS change and TWS change should be studied further, which is important to understand the driving mechanism of water resources change.

期刊论文 2021-07-01 DOI: http://dx.doi.org/10.1007/s11629-020-6474-8 ISSN: 1672-6316
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共14条,2页