It is important to comprehend the evolution of drought characteristics and the relationships between different kinds of droughts for effective drought mitigation and early warnings. The study area was the Pearl River Basin, where spatiotemporal changes in the multiscale water balance and soil moisture at various depths were analyzed. The meteorological data used in this study were derived from the China Meteorological Forcing Dataset, while the soil moisture data were obtained from the ECMWF ERA5-Land reanalysis dataset. The Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized Soil Moisture Index (SSI) were applied to represent meteorological and agricultural droughts, respectively. By using the run theory for drought event identification, the characteristic values of drought events were analyzed. The correlation between the multiscale SPEI and SSI was examined to represent the propagation time from meteorological drought to agricultural drought. This study indicated that while the western part of the Pearl River Basin experienced a worsening atmospheric moisture deficit and the southern part had intensifying dry conditions for soil moisture, the rest of the basin remained relatively moist and stable. Soil conditions were moister in the deeper soil layers. The durations of agricultural droughts have generally been shorter than those of meteorological droughts over the past 40 years. Within the top three soil layers, the severity, duration, and frequency of drought events progressively increased, increased, and decreased, respectively, as soil depth increased. The propagation time scale from a meteorological drought to a four-layer agricultural drought was typically within 1-5 months. This study advanced existing research by systematically analyzing drought propagation times across soil depths and seasons in the Pearl River Basin. The methodology in this study is applicable to other basins to analyze drought complexities under climate change, contributing to global drought resilience strategies. Understanding the spatiotemporal characteristics of meteorological and agricultural droughts and the propagation time between them can help farmers and agricultural departments predict droughts and take appropriate drought-resistant measures to alleviate the damage of droughts on agricultural production.
Drought is a perilous agrometeorological phenomenon that often causes crop damage in arid and semiarid regions vulnerable to climate variability. However, accurate drought monitoring remains deficient in many countries, including Kyrgyzstan, and the interconnections between several types of drought and contributions to crop yield are still unclear. Hence, we aimed to determine the propagation time in three types of drought (meteorological drought, soil drought, and vegetation drought) for understanding interconnections of them. Moreover, we focused on comprehensively evaluation the performance of multiple drought indices for each type over the complex terrain of Kyrgyzstan, especially for drought index of synergistic land surface temperature and vegetation conditions information. The results demonstrated that standard precipitation index (SPI) effectively detected meteorological drought, while the vegetation health index (VHI) coupled with temperature data was optimal for vegetation drought monitoring in Kyrgyzstan. Furthermore, our findings indicated a 1-month response time for soil drought at a 10 cm depth to SPI, and a 4-month response time at a 40 cm depth to meteorological drought (SPI). The response time of VHI to soil drought condition index (SMCI) was approximately 1 month, regardless of whether the soil drought occurred at a depth of 10 or 40 cm. In general, the response time of VHI to SPI was 3 months. Finally, by analyzing the correlation between crop yield productivity and drought indices, we discovered that the crop yield predictions by the three types of drought were differential and complex, but VHI was the most effective index. At the same time, VHIacc(May-Sep.), SMCIr(0-40 cm)_May-Sep., and SPI5_Aug. have different contributions to crop yield variations, and these are also differences in their impacts on different crops and provinces. The synergistic effect of the three types of drought may significantly improve crop yield prediction in Kyrgyzstan in future studies. These findings may significantly contribute to drought prevention and mitigation in drought-prone Central Asian countries.
Drought is a major natural disaster worldwide. Understanding the correlation between meteorological drought (MD) and agricultural drought (AD) is essential for relevant policymaking. In this paper, standardized precipi-tation evapotranspiration index and standardized soil moisture index were used to estimate the MD and AD in the North China Plain (NCP) to identify the correlation between MD and AD during the growth period of winter wheat. In addition, we investigated the contributions of climate change (CC) and human activity (HA) to AD and the factors influencing the loss of winter wheat net primary production (NPP). Drought propagation time (PT) increased spatially from the southern to northern NCP (from 3 to 11 months). PT first increased and then decreased during the phenological period of winter wheat, and the decreasing trend was delayed with an increasing latitude. In general, the relative contribution of CC to AD was higher than that of HA; the correlation between MD and AD exhibited a weakening trend, particularly during the middle and late phenological stages of winter wheat. Precipitation was the main driver of the effects of HA on AD; the effects were stronger in areas with less precipitation. However, because of the improved irrigation conditions and scarce rainfall during the growth period of winter wheat in the study area, the effects of precipitation on AD were nonsignificant. Instead, tem-perature, wind, and total solar radiation, which are highly correlated with evapotranspiration, were identified as the primary drivers of AD; spatiotemporal variations were noted in these correlations. Prolonged drought PT reduced NPP; the sensitivity of winter wheat NPP to AD was higher in humid areas than in semiarid or semi-humid areas. NPP loss occurred primarily due to HA. Our findings revealed a correlation between MD and AD in agroecosystems and may facilitate policymaking related to drought mitigation and food security.