共检索到 2

Equivalent black carbon (EBC) was measured with a seven-wavelength Aethalometer (AE-31) in the Urumqi River Valley, eastern Tien Shan, China. This is the first high-resolution, online measurement of EBC conducted in the eastern Tien Shan allowing analysis of the seasonal and hourly variations of the light absorption properties of EBC. Results showed that the highest concentrations of EBC were in autumn, followed by those in summer. The hourly variations of EBC showed two plateaus during 8:00-9:00 h local time (LT) and 16:00-19:00 h LT, respectively. The contribution of biomass burning to EBC in winter and spring was higher than in summer and autumn. The planetary boundary layer height (PBLH) showed an inverse relationship with EBC concentrations, suggesting that the reduction of the PBLH leads to enhanced EBC. The aerosol optical depths (AOD) over the Urumqi River Valley, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data and back trajectory analysis, showed that the pollution from Central Asia was more likely to affect the atmosphere of Tien Shan in summer and autumn. This suggests that long-distance transported pollutants from Central Asia could also be potential contributors to EBC concentrations in the Urumqi River Valley, the same as local anthropogenic activities.

期刊论文 2021-10-01 DOI: http://dx.doi.org/10.3390/atmos11050478

Black carbon (BC) is a major light-absorbing component in the atmosphere and plays an important role in aerosol radiative forcing. In this study, the combination of monitoring data and the WRF-Chem model was used to study the source apportionment of BC in China during January 2017. Meanwhile, the aerosol-radiation interaction (ARI) effect of BC was also simulated. We found that the average BC/PM(2.5)ratios were 4.8%, 4.2%, and 3.8% in Shijiazhuang, Tangshan, and Beijing, respectively. The source apportionment suggested that traffic emissions played a dominant role in the BC concentration over Beijing. The traffic, residential, industrial, and power contributions accounted for 41%, 32%, 25%, and 2% of total concentration, respectively. The BC concentration in Beijing was also affected by regional transport. During January, the contributions of monthly regional transport to BC and PM(2.5)concentrations in Beijing were 41% and 49%, respectively. BC emissions decreased downward shortwave radiation (SWDOWN) at the surface, leading to a decrease in temperature. As a result, the planetary boundary layer height (PBLH) development was suppressed and the relative humidity increased. The stable meteorological conditions suppressed the dispersion of air pollutants and increased BC concentrations. Traffic emissions decreased the monthly SWDOWN by approximately 2.2 W/m(2), decreased 2 m temperature (T2) by approximately 0.1 degrees C, increased 2 m relative humidity (RH2) by approximately 0.5%, and decreased PBLH by approximately 4.4 m.

期刊论文 2020-11-01 DOI: 10.1007/s11356-020-09881-z ISSN: 0944-1344
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页