The additions of microbial organic fertilizer (MOF), a microbial inoculant (MI), and quicklime (Q) are considered to be sustainable practices to restore land that has been damaged by continuous cropping of pepper (Capsicum annuum L.). However, the combined effects of these three additives on pepper yield, soil chemical properties, and soil microbial communities were unclear. The experimental design consists of 13 treatment groups: the untreated soil (control); soil amended solely with three treatments for each of MOF (1875-5625 kg ha-1), MI (150-450 mL plant-1), and Q (1500-4500 kg ha-1); and soil amended with combinations of MOF, MI, and Q at three comparable concentrations. A significant increase in pepper fruit diameter, length, yield, and soil available nitrogen, phosphorus, and potassium contents occurs upon exclusive and combined applications of MOF, MI, and Q. Pepper yield was greatest (29.89% more than control values) in the combined treatment with concentrations of 1875 kg ha-1 MOF, 150 mL plant-1 MI, and 1500 kg ha-1 Q. The application of Q increased soil pH and reduced soil-fungal richness. The application of MOF, MI, and Q increased the relative abundance of bacterial genera and the complexity of bacterial and fungal co-occurrence networks compared with control levels. The combined application of MOF, MI, and Q resulted in the greatest microbial network complexity. A Mantel test revealed the key role of soil available nitrogen content and bacterial diversity in the regulation of pepper growth and yield. We conclude that the combined application of MOF, MI, and Q improves soil nutrient availability and modifies soil microbial community composition, significantly promoting plant growth and pepper yield during continuous cultivation.
Deforestation and slash combustion have substantial adverse impacts on the atmosphere, soil and microbe. Despite this awareness, numerous individuals persist in opting for high-intensity Eucalyptus planting through slash-burning in pursuit of immediate profits while disregarding the environmental significance and destroying the soil. Slash-unburnt agriculture can effectively safeguard the ecological environment, and compared with slash-burning, there remains a limited understanding of its regulatory mechanisms on soil fertility and microbial community. Also, large uncertainty persists regarding the utilization of harvest residues. Thoroughly investigating these questions from various perspectives encompassing physical soil characteristics, nutrient availability, bacterial community structures, and stability is crucial. To explore the ecological advantages of slash-unburnt techniques on microorganisms and their associated ecosystems, we used two slash-unburnt (Unburnt) planting techniques: Spread (naturally and evenly covering the forest floor after logging) and Stack (residues are piled along contour lines) as well as the traditional slash Burnt method (Burnt) in a Eucalyptus plantation. A comparative analysis was conducted between the two methods. We observed that over a span of 4 years, despite the initial lower application of fertilizer in the Unburnt treatments compared with the Burnt treatment during the first 2 years, the Unburnt treatment gradually caught up or even surpassed and attained similar nutrient levels as the Burnt treatment. Alphaproteobacteria was the main phyla that indicated the difference in soil bacterial communities between Burnt and Unburnt treatments. The microbial networks also highlighted the significance of the Unburnt method, as it contributed to the preservation of crucial network nodes and the stability of soil bacterial communities. Therefore, rational utilization of harvest residue may effectively avoid the vast damage caused by slash-burning to Eucalyptus trees and the soil environment but may also increase the potential for restoring soil fertility, improving fertilizer utilization efficiency, and maintaining microbial community stability over time.
This study assessed whether a natural regeneration or active tree-planting reforestation strategy better restored the C and N-cycle processes and associated microbiota within soils after 18 years in a Premontane Wet Life zone site in Monteverde, Costa Rica, compared to adjacent old secondary forest and pasture soils (both >60 years). Our findings apply to small-scale restoration sites (<0.5 ha plots) commonly used in Monteverde. Both restoration strategies showed recovering soil C and N-cycle processes with similar levels of TN, NH4+, NO3-, Biomass-C, and efficiency of organic C use. Both strategies appeared to positively influence the recovery of the levels and community compositional stability of the Actinobacterial, Acidobacterial, N-fixing (N-Fixer) bacterial, ammonium-oxidizing bacterial, and complex organic C-degrading fungal communities. The main differences between the two strategies were that the tree-planted and pasture soils had similar compositions of the Actinobacterial, N-Fixer, and Fungal complex organic C degrader, while the natural regeneration and pasture soils had similar compositions of these groups and the Acidobacteria. However, the community compositions of all five microbial groups were different between restored forest and the old secondary forest soils. These results suggest that while the soil ecosystems from both reforestation strategies are recovering, after 18 years, there is still more recovery to occur. Lastly, possible indicators of post-restoration soil ecosystem enhancement included increasing constancy of critical microbial group composition, efficiency of organic C conversion to biomass, Biomass-C,NH4+, NO3-, and levels of Acidothermus, Acidobacteria subgroups 2, 3, and 5, Archaeorhizomyces, Anaeromyxobacter, Bradyrhizobium, Nitrosomonas, Flavobacterium, and Nitrospira.
The Loess Plateau, located in Gansu Province, is an important energy base in China because most of the oil and gas resources are distributed in Gansu Province. In the last 40 a, ecological environment in this region has been extremely destroyed due to the over-exploitation of crude-oil resources. Remediation of crude-oil contaminated soil in this area remains to be a challenging task. In this study, in order to elucidate the effects of organic compost and biochar on phytoremediation of crude-oil contaminated soil (20 g/kg) by Calendula officinalis L., we designed five treatments, i.e., natural attenuation (CK), planted C. officinalis only (P), planted C. officinalis with biochar amendment (PB), planted C. officinalis with organic compost amendment (PC), and planted C. officinalis with co-amendment of biochar and organic compost (PBC). After 152 d of cultivation, total petroleum hydrocarbons (TPH) removal rates of CK, P, PB, PC and PBC were 6.36%, 50.08%, 39.58%, 73.10% and 59.87%, respectively. Shoot and root dry weights of C. officinalis significantly increased by 172.31% and 80.96% under PC and 311.61% and 145.43% under PBC, respectively as compared with P (P<0.05). Total chlorophyll contents in leaves of C. officinalis under P, PC and PBC significantly increased by 77.36%, 125.50% and 79.80%, respectively (P<0.05) as compared with PB. Physical-chemical characteristics and enzymatic activity of soil in different treatments were also assessed. The highest total N, total P, available N, available P and SOM occurred in PC, followed by PBC (P<0.05). C. officinalis rhizospheric soil dehydrogenase (DHA) and polyphenol oxidase (PPO) activities in PB were lower than those of other treatments (P<0.05). The values of ACE (abundance-based coverage estimators) and Chao indices for rhizospheric bacteria were the highest under PC followed by PBC, P, PB and CK (P<0.05). However, the Shannon index for bacteria was the highest under PC and PBC, followed by P, PB and CK (P<0.05). In terms of soil microbial community composition, Proteiniphilum, Immundisolibacteraceae and Solimonadaceae were relatively more abundant under PC and PBC. Relative abundances of Pseudallescheria, Ochroconis, Fusarium, Sarocladium, Podospora, Apodus, Pyrenochaetopsis and Schizpthecium under PC and PBC were higher, while relative abundances of Gliomastix, Aspergillus and Alternaria were lower under PC and PBC. As per the nonmetric multidimensional scaling (NMDS) analysis, application of organic compost significantly promoted soil N and P contents, shoot length, root vitality, chlorophyll ratio, total chlorophyll, abundance and diversity of rhizospheric soil microbial community in C. officinalis. A high pH value and lower soil N and P contents induced by biochar, altered C. officinalis rhizospheric soil microbial community composition, which might have restrained its phytoremediation efficiency. The results suggest that organic compost-assisted C. officinalis phytoremediation for crude-oil contaminated soil was highly effective in the Loess Plateau, China.
While the composition and diversity of soil microbial communities play a central and essential role in biogeochemical cycling of nutrients, they are known to be shaped by the physical and chemical properties of soils and various environmental factors. This study investigated the composition and diversity of microbial communities in 48 samples of seasonally frozen soils collected from 16 sites in an alpine wetland region (Lhasa River basin) and an alpine forest region (Nyang River basin) on the Tibetan Plateau using high-throughput sequencing that targeted the V3-V4 region of 16S rRNA gene. The dominant soil microbial phyla included Proteobacteria, Acidobacteria, and Actinobacteria in the alpine wetland and alpine forest ecosystems, and no significant difference was observed for their microbial composition. Linear discriminant analysis Effect Size (LEfSe) analysis showed that significant enrichment of Hymenobacteraceae and Cytophagales (belonging to Bacteroidetes) existed in the alpine wetland soils, while the alpine forest soils were enriched with Alphaproteobacteria (belonging to Proteobacteria), suggesting that these species could be potential biomarkers for alpine wetland and alpine forest ecosystems. Results of redundancy analysis (RDA) suggest that the microbial community diversity and abundance in the seasonally frozen soils on the Tibetan Plateau were mainly related to the total potassium in the alpine wetland ecosystem, and available potassium and soil moisture in the alpine forest ecosystem, respectively. In addition, function prediction analysis by Tax4Fun revealed the existence of potential functional pathways involved in human diseases in all soil samples. These results provide insights on the structure and function of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan Plateau, while the potential risk to human health from the pathogenic microbes in the seasonally frozen soils deserves attention. (C) 2020 Elsevier B.V. All rights reserved.