共检索到 8

In sensitive ecosystems of the Arctic, even slight disruptions may produce serious damage. Therefore, the extent of contamination in such zones should be evaluated. A comparison was made between concentrations of metals in Sanionia uncinata in three areas of the European Arctic: (1) the vicinity of the Polish Polar Station in the SW part of Spitsbergen on Wedel Jarlsberg Land, (2) Longyearbyen (Spitsbergen) influenced by local sources of pollution and (3) Iceland relatively free from local pollution. The tested hypothesis was that S. uncinata from Iceland contains significantly lower concentrations of metals than the same moss from Spitsbergen. The maximum concentrations of metals in the examined moss from Longyearbyen reached values for Cr and Mn higher than those known as harmful for plants and for Ni and Zn values within the harmful ranges with no visible harmful effects. S. uncinata from Iceland contained significantly lower concentrations of Cd, Mn, Pb compared to this species from Spitsbergen. S. uncinata seems to be a useful indicator for metal fallout in the European Arctic. This study presents the effects of local sources of contamination on metal levels in S. uncinata from Longyearbyen, Wedel Jarlsberg Land and Iceland as well as verification of S. uncinata as a suitable bioindicator in this Arctic area. The benefit of the study is a to better understanding contamination problems of Arctic habitats.

期刊论文 2025-09-01 DOI: 10.1007/s00300-025-03394-6 ISSN: 0722-4060

Phytoremediation, the practice of removing heavy metals from contaminated sites using plants, has emerged as a cost-effective, environmentally friendly green technology to restore damaged ecosystems. Mosses, in particular, demonstrate high phytoremediation potential due to their ability to accumulate heavy metals such as lead, zinc, copper, chromium, cadmium, and iron from contaminated soil and water. This review systematically examines 37 research articles published from 2000 to 2022, focusing on the on the use of mosses for phytoremediation. Moss species, such as Funaria hygrometrica Hedw, Scopelophila cataractae (Mitten) Brotherus, Dicranum scoparium Hedw, Dicranum polysetum Sw. ex anon, Hypnum cupressiforme Hedw, Physcomitrium cyathicarpum Mitt, Barbula constricta Mitt, and Leptodictyum riparium (Hedw.) Warnst. have been identified as ideal candidates for phytoremediation efforts. Specific species of mosses, such as Dicranum species, are noted for their excellent bioaccumulation capabilities of elements like vanadium, manganese, and rubidium, serving as indicators of air pollution. Additionally, Hypnum cupressiforme has proven to be a reliable indicator of sulfur dioxide in natural and anthropogenic sources. This comprehensive review highlights the significant phytoremediation potential of mosses, emphasizing their role as valuable bioaccumulators and indicators of heavy metals and pollutants. The findings highlight the necessity of further research to enhance the application of mosses in environmental management and remediation strategies, ultimately contributing to the development of sustainable and effective solutions for pollution control.

期刊论文 2025-02-01 DOI: 10.1007/s10534-024-00649-3 ISSN: 0966-0844

The intensity and frequency of forest fires are increasing in the cultural landscape of central Europe as the climate is becoming warmer and drier. This requires an understanding of natural regeneration processes in forests and the effects of traditional and new approaches to restoring fire-damaged forests; however, it warrants more research in Germany, where large-scale stand-replacing fire is a new phenomenon in recent times. Specifically, early successional plant pioneer communities, such as mosses, influence the regenerating forest system, by providing viable conditions and habitats for subsequent plant species. The present work focuses on the processes that take place in the moss communities undergoing management interventions of a gradient of intervention intensities after fire disturbance. In a plot-based field inventory, we investigated early successional moss communities three years after a forest fire in Brandenburg, Germany. The study area was subjected to various postfire interventions: high intensity site preparation and dense row planting, natural regeneration (no intervention), and a moderate site preparation in combination with low-density group planting approach. Utilizing Bray-Curtis-based nonmetric multidimensional scaling to assess similarities among postfire moss communities, a simplification of moss communities under high-intensity postfire intervention was observed. We found that the diversity and abundance of mosses decreased with the application of high-intensity postfire intervention but increased with the application of moderate postfire interventions. Furthermore, we found a higher share of light-demanding pioneer mosses in areas under high intensity postfire intervention. In areas under moderate or no postfire intervention, more shade-tolerant species were present. We conclude that moderate interventions with low-intensity site preparation and group planting resulted in reduced losses of moss species and coverage in the successional moss community.

期刊论文 2024-06-06 DOI: 10.1093/forestry/cpae025 ISSN: 0015-752X

Ground surface temperature (GST) and active layer thickness (ALT) are key indicators of climate change (CC) in permafrost regions, with their relationships with climate and vegetation being crucial for the understanding of future climate change scenarios, as well as of CC feedbacks on the carbon cycle and water balance. Antarctic ice free-areas host simplified ecosystems with vegetation dominated by mosses and lichens, and an almost negligible anthropogenic impact, providing a good template of ecosystem responses to CC. At three different Antarctic Conservation Biogeographical Regions (ACBR) sites in Antarctica located between 74 degrees and 60 degrees S, we compared barren ground and moss vegetated sites to understand and quantify the effects of climate (air temperature and incoming radiation) and of vegetation on GST and ALT. Our data show that incoming radiation is the most important driver of summer GST at the southernmost site, while in the other sites air temperature is the main driver of GST. Our data indicate that there is a decoupling between ALT and summer GST, because the highest GST values correspond with the thinnest ALT. Moreover, our data confirm the importance of the buffering effect of moss vegetation on GST in Antarctica. The intensity of the effect of moss cover on GST and ALT mainly depends on the species-specific moss water retention capacity and on their structure. These results highlight that the correct assessment of the moss type and of its water retention can be of great importance in the accurate modelling of ALT variation and its feedback on CC.

期刊论文 2020-07-01 DOI: 10.1016/j.catena.2020.104562 ISSN: 0341-8162

Calcareous spring fens are among the rarest and most endangered wetland types worldwide. The majority of these ecosystems can be found at high latitudes, where they are affected by above average rates of climate change. Particularly winter temperatures are increasing, which results in decreased snow cover. As snow provides an insulating layer that protects ecosystems from subzero temperatures, its decrease is likely to induce stress to plants. To investigate the sensitivity of the bryophyte community - key to the functioning of calcareous spring fens - to changing climatic conditions, we studied the annual variation in ecophysiology of two dominant bryophytes: Campylium stellatum and Scorpidium scorpioides. Further, a snow removal experiment was used to simulate the effect of changing winter conditions. In both species, we observed lowest efficiency of photosystem II (Fv/Fm) in spring, indicating physiological stress, and highest chlorophyll-a, -b and carotenoid concentrations in autumn. Snowremoval exacerbated physiological stress in bryophytes. Consequently Fv/Fm, pigment concentrations and chlorophyll to carotenoids ratios declined, while chlorophyll-a to -b ratios increased. Moreover, these effects of winter climate change cascaded to the growing season. C. stellatum, a low hummock inhabitor, suffered more from snow removal (annual mean decline in Fv/Fm 7.7% and 30.0% in chlorophyll-a) than S. scorpioides, a hollow species (declines 5.4% and 14.5%, respectively). Taken together, our results indicate that spring fen bryophytes are negatively impacted by winter climate change, as a result of longer frost periods and increased numbers of freeze-thaw cycles in combination with higher light intensity and dehydration. (c) 2019 Elsevier B.V. All rights reserved.

期刊论文 2019-12-10 DOI: 10.1016/j.scitotenv.2019.133867 ISSN: 0048-9697

Continental Antarctica represents the last pristine environment on Earth and is one of the most suitable contexts to analyze the relations between climate, active layer and vegetation. In 2000 we started long-term monitoring of the climate, permafrost, active layer and vegetation in Victoria Land, continental Antarctica. Our data confirm the stability of mean annual and summer air temperature, of snow cover, and an increasing trend of summer incoming short wave radiation. The active layer thickness is increasing at a rate of 0 : 3 cm y(-1). The active layer is characterized by large annual and spatial differences. The latter are due to scarce vegetation, a patchy and very thin organic layer and large spatial differences in snow accumulation. The active layer thickening, probably due to the increase of incoming short wave radiation, produced a general decrease of the ground water content due to the better drainage of the ground. The resultant drying may be responsible for the decline of mosses in xeric sites, while it provided better conditions for mosses in hydric sites, following the species-specific water requirements. An increase of lichen vegetation was observed where the climate drying occurred. This evidence emphasizes that the Antarctic continent is experiencing changes that are in total contrast to the changes reported from maritime Antarctica.

期刊论文 2014-04-01 DOI: 10.1088/1748-9326/9/4/045001 ISSN: 1748-9326

Questions Is the macrolichen Usnea antarctica a nurse' species to Antarctic flora? Are positive plantplant interactions more frequent than negative interactions in Antarctic ecosystems? Are microclimatic modifications by cushions of U.antarctica responsible for the nurse effect? Location Two sites in Antarctica: King George Island, South Shetland (62 degrees 11S, 58 degrees 56W; 62 degrees 11S, 58 degrees 59W). Methods We evaluated the association of plant species with U.antarctica cushions by recording species growing in equivalent areas within and outside U.antarctica cushions. Additionally, we performed transplant experiments with Deschampsia antarctica individuals to assess if U.antarctica cushions enhance plant survival. In both study sites we monitored temperature, moisture and nutrient status of soil outside and within the cushions to provide insights into potential mechanisms underlying possible interactions between U.antarctica and other plant species. Results Eight out of 13 species were positively associated with cushions of the widespread lichen U.antarctica, while only one species (U.aurantiaco-atra) showed a negative association with U.antarctica. Survival of Deschampsia was enhanced when growing associated with U.antarctica cushions. Our results indicate that cushions ameliorated the extreme conditions of Antarctic islands through increased temperature and soil moisture, decreased radiation and evaporative water loss and increased nutrient availability. Conclusions The nurse effect of U.antarctica is verified. Cushions of this macrolichen may be a key component in structuring the Antarctic landscape and maintaining local species richness, and their presence might influence range expansion of other species.

期刊论文 2013-05-01 DOI: 10.1111/j.1654-1103.2012.01480.x ISSN: 1100-9233

The response of peat-rich permafrost soils to human-induced climate change may be especially important in modifying the global C-flux. We examined the Holocene developmental record of a High Arctic peat-forming wetland to investigate its sensitivity to past climate change and aid understanding of the likely effects of future climate warming on high-latitude ecosystems. The microhabitat of mosses was quantified in the present-day polygon-complex at Bylot Island (73 degrees N, 80 degrees W) and used to interpret the radiocarbon-dated macrofossil record of three cores, comprising c. 3500 years of wetland development. Recurrent wet and dry phases in the reconstructed palaeohydrological record indicated pronounced temporal variability. Wet and dry phases were compared between cores and with palaeoclimatic proxy values, measured as percentage melt and delta O-18 in nearby ice cores. Periodic wet and dry phases appear unrelated to past climate over c. 50% of the combined stratigraphic records, and are attributable instead to geomorphological mechanisms. At other times, association of wet and dry phases with significantly lower and higher values of percentage melt and delta O-18 indicate a possible effect of past climate change on polygon hydrology and vegetation, although inconsistencies between cores suggest that local geomorphological processes continued to modify a regional climatic effect. However, during a period incorporating the Little Ice Age (c. 305-530 cal. years BP), reconstructed moisture and vegetation change is pronounced and consistent among all three cores. The results provide strong evidence for the sensitivity of a High Arctic terrestrial ecosystem to past climate change during the Holocene. The estimated magnitude of changes in soil moisture between wet and dry phases is sufficient to imply recurrent shifts in wetland function, periodically impacted upon by pronounced climatic variability, although controlled principally by autogenic processes. The structure and function of such wetlands may therefore be susceptible to predicted, human-induced climate warming.

期刊论文 2006-03-01 DOI: 10.1111/j.1365-2745.2005.01085.x ISSN: 0022-0477
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页