This paper investigates the spatiotemporal dynamics and their changes of the southern limit of latitudinal permafrost (SLLP) and the lower limit of mountain permafrost (LLMP) in Northeast China, emphasizing the roles of climate change and human activities. Permafrost in this region is primarily distributed in the northern parts of the Da and Xiao Xing'anling mountain ranges and in the upper parts of the Changbai Mountains and at the summits of the Huanggangliang Mountains in the southern part of the Da Xing'anling Mountain Range. Permafrost degradation, ongoing since at least the local Holocene Megathermal Period (8.5-6.0 ka BP), has intermittently reversed during cooler climatic intervals but continues to exert significant impacts on regional environments, infrastructure stability, and carbon storage. Notably, the northward retreats of the SLLP since the mid-19th century underscore the sustained nature of this degradation, especially in southern patchy permafrost zones increasingly sensitive to warming and anthropogenic influences. LLMP variability is similarly shaped by a combination of climatic, hydrometeorological, ecological, and topographic factors. The distributions of SLLP and LLMP are further complicated by the presence of relict and sporadic permafrost, as well as the hydrothermal effects of vegetation and snow cover. Addressing the challenges of mapping and modeling boreal permafrost in Northeast China requires comprehensive field investigations, long-term in situ monitoring via station networks, and advanced numerical modeling. Emerging technologies, including satellite and airborne remote sensing (RS), geographic information systems (GIS), unmanned aerial vehicles (UAVs), surface geophysical methods, and big data analytics, offer new possibilities for enhancing permafrost monitoring and mapping. Integrating these tools with conventional field studies can significantly improve our understanding of permafrost dynamics. Continued efforts in monitoring, technological innovation, multidisciplinary collaboration, and international cooperation are essential to meet the challenges posed by permafrost degradation in a changing climate.
Alpine treelines ecotones are critical ecological transition zones and are highly sensitive to global warming. However, the impact of climate on the distribution of treeline trees is not yet fully understood as this distribution may also be affected by other factors. Here, we used high-resolution satellite images with climatic and topographic variables to study changes in treeline tree distribution in the alpine treeline ecotone of the Changbai Mountain for the years 2002, 2010, 2017, and 2021. This study employed the Geodetector method to analyze how interactions between climatic and topographic factors influence the expansion of Betula ermanii on different aspect slopes. Over the past 20 years, B. ermanii, the only tree species in the Changbai Mountain tundra zone, had its highest expansion rate from 2017 to 2021 across all the years studied, approaching 2.38% per year. In 2021, B. ermanii reached its uppermost elevations of 2224 m on the western aspects and 2223 m on the northern aspects, which are the predominant aspects it occupies. We also observed a notable increase in the distribution of B. ermanii on steeper slopes (> 15 degrees) between 2002 and 2021. Moreover, we found that interactions between climate and topographic factors played a more significant role in B. ermanii's expansion than any single dominant factor. Our results suggest that the interaction between topographic wetness index and the coldest month precipitation (Pre(1)), contributing 91% of the observed variability, primarily drove the expansion on the southern aspect by maintaining soil moisture, providing snowpack thermal insulation which enhanced soil temperatures, decomposition, and nutrient release in harsh conditions. On the northern aspect, the interaction between elevation and mean temperature of the warmest month explained 80% of the expansion. Meanwhile, the interaction between Pre(1) and mean temperature of the growing season explained 73% of the expansion on the western aspect. This study revealed that dominant factors driving treeline upward movement vary across different mountain aspects. Climate and topography play significant roles in determining tree distribution in the alpine treeline ecotone. This knowledge helps better understand and forecast treeline dynamics in response to global climate change.
Soil microorganisms play a pivotal role in the biogeochemical cycles of alpine meadow ecosystems, especially in the context of permafrost thaw. However, the mechanisms driving microbial community responses to environmental changes, such as variations in active layer thickness (ALT) of permafrost, remain poorly understood. This study utilized next-generation sequencing to explore the composition and co-occur rence patterns of soil microbial communities, focusing on bacteria and micro-eukaryotes along a permafrost thaw gradient. The results showed a decline in bacterial alpha diversity with increasing permafrost thaw, whereas micro-eukaryotic diversity exhibi ted an opposite trend. Although changes in microbial community composition were observed in permafrost and seasonally frozen soils, these shifts were not statistically significant. Bacterial communities exhibited a greater differentiation between frozen and seasonally frozen soils, a pattern not mirrored in eukaryotic communities. Linear discriminant analysis effect size analysis revealed a higher number of potential biomark ers in bacterial communities compared with micro-eukaryotes. Bacterial co-occurrence networks were more complex, with more nodes, edges, and positive linkages than those of micro-eukaryotes. Key factors such as soil texture, ALT, and bulk density significantly influenced bacterial community structures, particularly affecting the relative abundan ces of the Acidobacteria, Proteobacteria, and Actinobacteria phyla. In contrast, fungal communities (e.g., Nucletmycea, Rhizaria, Chloroplastida, and Discosea groups) were more affected by electrical conductivity, vegetation coverage, and ALT. This study highlights the distinct responses of soil bacteria and micro-eukaryotes to permafrost thaw, offering insights into microbial community stability under global climate change.
Glaciers provide multiple ecosystem services (ES) to human society. Due to the continued global warming, the valuation of glacier ES is of urgent importance because this knowledge can support the protection of glaciers. However, a systematic valuation of glacier ES is still lacking, particularly from the perspective of ES contributors. In this study, we introduce the concept of emergy to establish a methodological framework for accounting glacier ES values, and take the Tibetan Plateau (TP) as a case study to comprehensively evaluate the spatiotemporal characteristics of glacier ES during the early 21st century. The results show that the total glacier ES values on the TP increased from 2.36E+24 sej/yr in the 2000s to 2.40E+24 sej/yr in the 2010s, with an overall growth rate of 1.6%. The values of the various services in the 2010s are ranked in descending order: climate regulation (1.59E+24 sej/yr, 66.1%), runoff regulation (4.40E+23 sej/yr, 18.4%), hydropower generation (1.88E+23 sej/ yr, 7.8%). Significantly higher glacier ES values were recorded in the marginal TP than in the endorheic area. With the exception of climate regulation and carbon sequestration, all other service values increased during the study period, partially cultural services, which have experienced rapid growth in tandem with social development. The results of this study will help establish the methodological basis for the assessment of regional and global glacier ES, as well as a scientific basis for the regional protection of glacier resources.
This study investigates black carbon (BC) concentrations in the seasonal snowpack on the Godwin-Austen Glacier and in surface snow at K2 Camps 1 and 2 (Karakoram Range), assessing their impact on snowmelt during the 2019 ablation season. Potential BC and moisture sources were identified through back-trajectory analysis and atmospheric reanalyses. Variations in water stable isotopes (delta 1(8)O and delta 2H) in the snowpack were analysed to confirm its representativeness as a climatic record for the 2018-19 accumulation season. The average BC concentration in the snow pits (12 ng g-1) generated 66 mm w.e. (or 53 mm w.e. excluding the basal zone) of meltwater. Surface snow at K2 Camp 1 showed BC concentrations of 7 ng g-1, consistent with those on the snowpack surface, suggesting it may reflect local BC levels in late February 2019. In contrast, higher concentrations at K2 Camp 2 (26 ng g-1) were potentially linked to expedition activities.
With the global climate change, glaciers on the Qinghai-Tibet Plateau (QTP) and its adjacent mountainous regions are retreating rapidly, leading to an increase in active rock glaciers (ARGs) in front of glaciers. As crucial components of water resources in alpine regions and indicators of permafrost boundaries, ARGs reflect climatic and environmental changes on the QTP and its adjacent mountainous regions. However, the extensive scale of rock glacier development poses a challenge to field investigations and sampling, and manual visual interpretation requires substantial effort. Consequently, research on rock glacier cataloging and distribution characteristics across the entire area is scarce. This study statistically analyzed the geometric characteristics of ARGs using high- resolution GF-2 satellite images. It examined their spatial distribution and relationship with local factors. The findings reveal that 34,717 ARGs, covering an area of approximately 6873.54 km2, with an average area of 0.19 +/- 0.24 km2, a maximum of 0.0012 km2, and a minimum of 4.6086 km2, were identified primarily in north-facing areas at elevations of 4300-5300 m and slopes of 9 degrees-25 degrees, predominantly in the Karakoram Mountains and the Himalayas. Notably, the largest concentration of ARGs was found on north-facing shady slopes, constituting about 42 % of the total amount, due to less solar radiation and lower near-surface temperatures favorable for interstitial ice preservation. This research enriches the foundational data on ARG distribution across the QTP and its adjacent mountainous regions, offering significant insights into the response mechanisms of rock glacier evolution to environmental changes and their environmental and engineering impacts.
The Qilian Mountains, located on the northeastern edge of the Qinghai-Tibet Plateau, are characterized by unique high-altitude and cold-climate terrain, where permafrost and seasonally frozen ground are extensively distributed. In recent years, with global warming and increasing precipitation on the Qinghai-Tibet Plateau, permafrost degradation has become severe, further exacerbating the fragility of the ecological environment. Therefore, timely research on surface deformation and the freeze-thaw patterns of alpine permafrost in the Qilian Mountains is imperative. This study employs Sentinel-1A SAR data and the SBAS-InSAR technique to monitor surface deformation in the alpine permafrost regions of the Qilian Mountains from 2017 to 2023. A method for spatiotemporal interpolation of ascending and descending orbit results is proposed to calculate two-dimensional surface deformation fields further. Moreover, by constructing a dynamic periodic deformation model, the study more accurately summarizes the regular changes in permafrost freeze-thaw and the trends in seasonal deformation amplitudes. The results indicate that the surface deformation time series in both vertical and east-west directions obtained using this method show significant improvements in accuracy over the initial data, allowing for a more precise reflection of the dynamic processes of surface deformation in the study area. Subsidence is predominant in permafrost areas, while uplift mainly occurs in seasonally frozen ground areas near lakes and streams. The average vertical deformation rate is 1.56 mm/a, with seasonal amplitudes reaching 35 mm. Topographical (elevation; slope gradient; aspect) and climatic factors (temperature; soil moisture; precipitation) play key roles in deformation patterns. The deformation of permafrost follows five distinct phases: summer thawing; warm-season stability; frost heave; winter cooling; and spring thawing. This study enhances our understanding of permafrost deformation characteristics in high-latitude and high-altitude regions, providing a reference for preventing geological disasters in the Qinghai-Tibet Plateau area and offering theoretical guidance for regional ecological environmental protection and infrastructure safety.
Water temperature extremes can pose serious threats to the aquatic ecosystems of mountain rivers. These rivers are influenced by snow and glaciermelt, which change with climate. As a result, the frequency and severity of water temperature extremes may change. While previous studies have documented changes in non-extreme water temperature, it is yet unclear how extreme water temperatures change in a warming climate and how their hydro-meteorological drivers differ from those of non-extremes. This study aims to assess temporal changes and spatial variability in water temperature extremes and enhance our understanding of the driving processes across European mountain rivers in the current climate, at both a regional and continental scale. First, we describe the characteristics of extreme events and explore their relationships with catchment characteristics. Second, we assess trends in water temperature extremes and compare them with trends in mean water temperature. Third, we use random forest models to identify the main driving processes of water temperature extremes. Last, we conduct a co-occurrence analysis to examine the relationship between water temperature extremes and hydro-climatic extremes. Our results show that mean water temperature has increased by +0.38 +/- 0.14 ${+}0.38\pm 0.14$degrees C per decade, leading to more extreme events at high elevations in spring and summer. While non-extreme water temperatures are mainly driven by air temperature, water temperature extremes are also importantly influenced by soil moisture, baseflow, and meltwater. Our study highlights the complexity of water temperature dynamics in mountain rivers at the regional and continental scale, especially during water temperature extremes.
Glacial changes are crucial to regional water resources and ecosystems in the Sawir Mountains. However, glacial changes, including the mass balance and glacial meltwater of the Sawir Mountains, have sparsely been reported. Three model calibration strategies were constructed including a regression model based on albedo and in-situ mass balance of Muz Taw Glacier (A-Ms), regression model based on albedo and geodetic mass balance of valley, cirque, and hanging glaciers (A-Mr), and degree-day model (DDM) to obtain a reliable glacier mass balance in the Sawir Mountains and provide the latest understanding in the contribution of glacial meltwater runoff to regional water resources. The results indicated that the glacial albedo reduction was significant from 2000 to 2020 for the entire Sawir Mountains, with a rate of 0.015 (10a)- 1, and the spatial pattern was higher in the east compared to the west. Second, the three strategies all indicated that the glacier mass balance has been continuously negative during the past 20 periods, and the average annual glacier mass balance was -1.01 m w.e. Third, the average annual glacial meltwater runoff in the Sawir Mountains from 2000 to 2020 was 22 x 106 m3, and its
Warming leads to significant loss of CO2 in high-altitude regions (HAR), posing threat to the carbon sink of terrestrial ecosystem. Additionally, the spatial distribution of environmental factors and underlying surfaces also determine the carbon sink pattern. Therefore, it is necessary to systematically explore the carbon sink of HAR. Based on it, choosing the Qilian Mountains (QLM) as the study area, the continuous observation data of 14 eddy covariance in different ecosystems was used to analyze the variation characteristics of carbon use efficiency (CUE) and net ecosystem primary productivity (NEP), which is helpful to systematically understand the response of carbon cycle to climate change in alpine ecosystem. The research results indicated that the QLM serves as an effective carbon sink (13 of the sites yielded a net carbon sink), owing to the combined influences of environmental factors and vegetation characteristics. Annual NEP varied across the 14 sites, ranging from-192.6 to 524.5 g C/m(2)/yr. Limited observation indicated that wetland/swamp had the highest carbon sink, followed by forest, and shrub have the lowest carbon sink in this study. Along the altitudinal gradient, both gross primary productivity (GPP) and ecosystem respiration (Re) demonstrated a declining trend ( P < 0.05), while, CUE displayed an increasing trend. Soil temperature and photosynthetically active radiation dominated the variation in carbon exchange and CUE along the altitudinal gradient. However, soil moisture was the dominant factor in drought ecosystem. This study provides basis for the assessment of carbon sink of the HAR.