共检索到 3

The Tian Shan mountain range, known as the water towers of Central Asia, plays a key role in local water supply, yet large uncertainties remain about the amount of water that is stored in its glaciers. In this study, we assess the impact of the boundary conditions on ice thickness estimates using two inversion models: a mass conservation (MC) model and a basal shear stress (BS) model. We compare the widely used Randolph Glacier Inventory version 6 with the updated Glacier Area Mapping for Discharge from the Asian Mountains glacier inventory, as well as two digital elevation models (SRTM DEM and Copernicus DEM). The results show that the ice volume (in similar to 2000 CE) in the Tian Shan range is 661.0 +/- 163.5 km(3) for the MC model and 552.8 +/- 85.3 km(3 )for the BS model. There are strong regional differences due to inventory, especially for glaciers in China (17-25%). However, the effect of different DEM sources on ice volume estimation is limited. By the end of the 21st century, the projected mass loss differences between inventories are higher than between adjacent emission scenarios, illustrating the vital importance of high-quality inventories. These differences should be carefully considered during water resource planning.

期刊论文 2024-02-20 DOI: http://dx.doi.org/10.1017/jog.2022.60 ISSN: 0022-1430

Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system. Water-soluble carbonaceous matter is a heterogeneous mixture of organic compounds that is soluble in aquatic environments. Despite its importance, we still lack systematic understanding for dissolved organic carbon (DOC) in several aspects including exact chemical composition and physical interactions with microorganisms, glacier meltwater. This review presents the chemical composition and physical properties of glacier DOC deposited through anthropogenic emission, terrestrial, and biogenic sources. We present the molecular composition of DOC and its effect over snow albedo and associated radiative forcings. Results indicate that DOC in snow/ice is made up of aromatic protein-like species, fulvic acid-like materials, and humic acid-like materials. Light-absorbing impurities in surface snow and glacier ice cause considerable albedo reduction and the associated radiative forcing is definitely positive. Water-soluble carbonaceous matter dominated the carbon transport in the high-altitude glacial area. Owing to prevailing global warming and projected increase in carbon emission, the glacial DOC is expected to release, which will have strong underlying impacts on cryosphere ecosystem. The results of this work have profound implications for better understanding the carbon cycle in high altitude cryosphere regions. A new compilation of globally distributed work is required, including large-scale measurements of glacial DOC over high-altitude cryosphere regions, to overcome and address the scientific challenges to constrain climate impacts of light-absorbing impurities related processes in Earth system and climate models.

期刊论文 2024-01-01 DOI: 10.1007/s11629-023-8437-3 ISSN: 1672-6316

Investigating the characteristics and transformation of water-soluble carbonaceous matter in the cryosphere regions is important for understanding biogeochemical process in the earth system. Water-soluble carbonaceous matter is a heterogeneous mixture of organic compounds that is soluble in aquatic environments. Despite its importance, we still lack systematic understanding for dissolved organic carbon (DOC) in several aspects including exact chemical composition and physical interactions with microorganisms, glacier meltwater. This review presents the chemical composition and physical properties of glacier DOC deposited through anthropogenic emission, terrestrial, and biogenic sources. We present the molecular composition of DOC and its effect over snow albedo and associated radiative forcings. Results indicate that DOC in snow/ice is made up of aromatic protein-like species, fulvic acid-like materials, and humic acid-like materials. Light-absorbing impurities in surface snow and glacier ice cause considerable albedo reduction and the associated radiative forcing is definitely positive. Water-soluble carbonaceous matter dominated the carbon transport in the high-altitude glacial area. Owing to prevailing global warming and projected increase in carbon emission, the glacial DOC is expected to release, which will have strong underlying impacts on cryosphere ecosystem. The results of this work have profound implications for better understanding the carbon cycle in high altitude cryosphere regions. A new compilation of globally distributed work is required, including large-scale measurements of glacial DOC over high-altitude cryosphere regions, to overcome and address the scientific challenges to constrain climate impacts of light-absorbing impurities related processes in Earth system and climate models.

期刊论文 2021-06-01 DOI: http://dx.doi.org/10.1007/s11629-023-8437-3 ISSN: 1672-6316
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页