This study examines permafrost thermal regimes and hydrological responses to climate change in the Navarro Valley, Chile's Dry Central Andes, using a decade of ground temperature data (2013-2022) from two rock glaciers-RG1 (3805 m) and RG2 (4047 m)-alongside short-term meltwater conductivity records, meteorological data, and long-term streamflow records. We assess permafrost stability and climatic sensitivity by analyzing thermal offset data (2017-2022) and ground temperature trends. Both sites show sustained warming, but RG1 exhibits accelerated warming (+ 2.84 degrees C/decade), frequent freeze-thaw cycles, and extended thaw periods, indicating a transitional regime. In contrast, RG2 shows fewer freeze-thaw cycles and greater thermal buffering, consistent with cold permafrost. The statistical model overestimated thaw dynamics at RG2, highlighting the importance of field-based data for accurate classification. Hydrological signals at RG1-including cold, mineralized meltwater and rapid ground surface temperature stream coupling-are attributed to thawing and deeper flowpaths. Conductivity data (2014-2015) reveal solute pulses consistent with early melt events and debris interaction. Meanwhile, long-term streamflow trends indicate declining discharge. These findings suggest feedback between permafrost loss and water availability. This study underscores the divergent evolution of adjacent rock glaciers under warming by integrating thermal, hydrological, and climatic data. RG1 shows signs of degradation, while RG2 may act as a temporary refuge. Continued monitoring is essential for managing water security in vulnerable mountain regions like the Dry Andes.Graphical AbstractThis graphical abstract visually summarizes a ten-year monitoring effort of mountain permafrost and glacier hydrology in the Navarro Valley, Dry Andes (32 degrees S), with implications for water security under climate change. The left panel situates the study area within the upper Aconcagua Basin, identifying two instrumented sites within the Tres Gemelos rock glacier complex-RG1 (3805 m) and RG2 (4047 m)-and an automatic weather station. These sites were selected for continuous monitoring of ground temperature and streamflow to assess permafrost behavior in a water-stressed mountain catchment. Moving to the center, the image presents an integrated monitoring framework that links temperature-depth profiles, surface-subsurface thermal dynamics, and discharge records. Key indicators such as freeze-thaw cycle counts and thawed-day metrics are used to classify thermal regimes and detect warming trends. The upper-right panel features a conceptual model that connects permafrost degradation to hydrological responses: RG1, characterized as transitional, shows signs of enhanced shallow flow and seasonal meltwater pulses, while RG2 retains cold, thermally buffered conditions that support greater storage stability. These contrasts are further illustrated by temperature trend graphs, which reveal faster warming at RG1 (+ 2.84 degrees C/decade) compared to RG2 (+ 1.92 degrees C/decade), as well as increased thaw metrics. Below, a long-term streamflow graph (1970-2023) documents declining discharge, visually supported by a field photo of a dry riverbed. The bottom panel summarizes the study's key finding: RG1 and RG2 are evolving along divergent thermal and hydrological trajectories, underscoring the need for high-resolution monitoring to guide water resource planning in an era of warming and drought.
-The morphology and properties of permafrost-affected gleyzems and peat gleyzems in the tundra landscapes of the Subpolar Urals-the southernmost mineral soils with isolated patches of high-temperature permafrost particularly sensitive to present-day climate change-are considered. The study examines in detail the morphology and cryogenic structure of the soil profiles, temperature regime, mineralogical composition, and physicochemical properties of both seasonally thawed (active) layer and underlying permafrost. A thin active layer is characterized by the predominance of peat horizons and significant gleyzation of mineral horizons; a high-ice transient layer is found in the upper permafrost. Massive cryostructure is formed in seasonally frozen horizons, and lens-type and massive-agglomerate cryostructures are found in the underlying permafrost. Peat gleyzem, in contrast to the colder gleyzem, is characterized by a relatively mild temperature regime, which is explained by the increased thickness of the heat-insulating peat horizon and a greater depth of snow cover. Permafrost-affected soils of the Subpolar Urals are confined to climate-driven ecosystem-modified permafrost. A predominance of the coarse silt fraction in soils with a shallow embedding by permafrost rocks contributes to the significant thixotropy of gleyed horizons of the active layer. Cryogenic and lithological heterogeneity of the soil profiles in the conditions of the subarctic humid climate of the mountainous territory determines the specific structure and properties of permafrost-affected gley soils of the Subpolar Urals.
This paper investigates the spatiotemporal dynamics and their changes of the southern limit of latitudinal permafrost (SLLP) and the lower limit of mountain permafrost (LLMP) in Northeast China, emphasizing the roles of climate change and human activities. Permafrost in this region is primarily distributed in the northern parts of the Da and Xiao Xing'anling mountain ranges and in the upper parts of the Changbai Mountains and at the summits of the Huanggangliang Mountains in the southern part of the Da Xing'anling Mountain Range. Permafrost degradation, ongoing since at least the local Holocene Megathermal Period (8.5-6.0 ka BP), has intermittently reversed during cooler climatic intervals but continues to exert significant impacts on regional environments, infrastructure stability, and carbon storage. Notably, the northward retreats of the SLLP since the mid-19th century underscore the sustained nature of this degradation, especially in southern patchy permafrost zones increasingly sensitive to warming and anthropogenic influences. LLMP variability is similarly shaped by a combination of climatic, hydrometeorological, ecological, and topographic factors. The distributions of SLLP and LLMP are further complicated by the presence of relict and sporadic permafrost, as well as the hydrothermal effects of vegetation and snow cover. Addressing the challenges of mapping and modeling boreal permafrost in Northeast China requires comprehensive field investigations, long-term in situ monitoring via station networks, and advanced numerical modeling. Emerging technologies, including satellite and airborne remote sensing (RS), geographic information systems (GIS), unmanned aerial vehicles (UAVs), surface geophysical methods, and big data analytics, offer new possibilities for enhancing permafrost monitoring and mapping. Integrating these tools with conventional field studies can significantly improve our understanding of permafrost dynamics. Continued efforts in monitoring, technological innovation, multidisciplinary collaboration, and international cooperation are essential to meet the challenges posed by permafrost degradation in a changing climate.
This study presents data from the first years of permafrost monitoring in boreholes in the French Alps that started at the end of 2009 in the framework of the PermaFrance network. Nine boreholes are instrumented, among which six monitored permafrost temperature and active layer thickness (ALT) over >10 years. Ice-poor and cold permafrost in high-elevation north-facing rock walls has warmed by up to >1(degrees)C at 10 m depth over the reference decade (2011-2020), whereas ice-rich permafrost (rock glacier) temperatures remained stable. ALT has increased at four of the five boreholes for which decadal data are available. Summer 2015 marks a turning point in ALT regime and greatest ALT values were observed in 2022 (available for six boreholes), but thawing intensity did not show an obvious change. At one site with a layer of coarse blocks about 2 m thick, ALT was stable over 2018-2022 and response to the hottest years was dampened. Linear trends suggest an ALT increase of 2 m per decade for some ice-poor rock walls, independently of their thermal state. The data reveal a variety of permafrost patterns and evolution with significant intraregional and local differences. Snow modulates the response to air temperature signal in various ways, with an important effect on near-surface temperature trends and ALT: early snow melting in spring favors an ALT increase in rock walls. Maintaining these monitoring systems and understanding the physical processes controlling heterogeneous responses to climate signals is crucial to better assess permafrost dynamics and to adapt to its consequences.
Alpine permafrost environments are highly vulnerable and sensitive to changes in regional and global climate trends. Thawing and degradation of permafrost has numerous adverse environmental, economic, and societal impacts. Mathematical modeling and numerical simulations provide powerful tools for predicting the degree of degradation and evolution of subsurface permafrost as a result of global warming. A particularly significant characteristic of alpine environments is the high variability in their surface geometry which drives large lateral thermal and fluid fluxes along topographic gradients. The combination of these topography-driven fluxes and unsaturated ground makes alpine systems markedly different from Arctic permafrost environments and general geotechnical ground freezing applications, and therefore, alpine permafrost demands its own specialized modeling approaches. In this work, we present a multi-physics permafrost model tailored to subsurface processes of alpine regions. In particular, we resolve the ice-water phase transitions, unsaturated conditions, and capillary actions, and account for the impact of the evolving pore space through freezing and thawing processes. Moreover, the approach is multi-dimensional, and therefore, inherently resolves the topography-driven horizontal fluxes. Through numerical case studies based on the elevation profiles of the Zugspitze (DE) and the Matterhorn (CH), we show the strong influence of lateral fluxes in 2D on active layer dynamics and the distribution of permafrost.
Air and near-surface ground temperatures were measured using dataloggers over 14 years (2006-2020) in 10 locations at 2262 to 2471 m.a.s.l. in a glacial cirque of the Cantabrian Mountains. These sites exhibit relevant differences in terms of substrate, solar radiation, orientation, and geomorphology. Basal temperature of snow (BTS) measurements and electrical resistivity tomography of the talus slope were also performed. The mean annual near-surface ground temperatures ranged from 5.1 degrees C on the sunny slope to 0.2 degrees C in the rock glacier furrow, while the mean annual air temperature was 2.5 degrees C. Snow cover was inferred from near-surface ground temperature (GST) data, estimating between 130 and 275 days per year and 0.5 to 7.1 m snow thickness. Temperature and BTS data show that the lowest part of the talus slope and the rock glacier furrow are the coldest places in this cirque, coinciding with a more persistent and thickest snow cover. The highest temperatures coincide with less snow cover, fine-grained soils, and higher solar radiation. Snow cover has a primary role in controlling GST, as the delayed appearance in autumn or delayed disappearance in spring have a cooling effect, but no correlation with mean annual near-surface ground temperatures exists. Heavy rain-over-snow events have an important influence on the GST. In the talus slope, air circulation during the snow-covered period produces a cooling effect in the lower part, especially during the summer. Significant inter-annual GST differences were observed that exhibited BTS limitations. A slight positive temperature trend was detected but without statistically significance and less prominent than nearby reference official meteorological stations, so topoclimatic conditions reduced the more global positive temperature trend. Probable existence of permafrost in the rock glacier furrow and the lowest part of the talus slope is claimed; however, future work is necessary to confirm this aspect.
This study presents the long-term temperature monitoring in the Russian Altai Mountains. In contrast to the Mongolian and Chinese parts, the modern temperature regime of the Russian Altai remains unclear. The complexity of a comprehensive understanding of permafrost conditions in the Russian Altai is related to the high dis of the terrain, the paucity of the latest observational data, and the sparse population of permafrost areas. The general objective of this study is to determine the temperature regime on the surface, in the active layer, and in the zero annual amplitude (ZAA) layer, based on the known patterns of permafrost distribution in the region. Using automatic measuring equipment (loggers), we obtained information on the temperature of frozen and thawed ground within the altitudes from 1484 to 2879 m a. s. l. during the period from 2014 to 2020. An array of 15 loggers determined the temperature regime of bare and vegetated areas within watersheds, slopes, and valleys. N-factor parameters and surface temperature are similar to those in the Mongolian Altai, but the mean annual ground temperature at the depth of 1 m has a wide range of fluctuations (more than 32 degrees C) based on research results, and we allocated it into three groups based on altitudinal zonality. Snow cover has a strong influence on the temperature regime, but the determination of the fine-scale variability requires additional study. Ground temperature regime during the observation period remained stable, but continued monitoring allows a more detailed assessment of the response to climatic changes.
In recent decades, research of the Alps, Qinghai-Tibet Plateau, and Cordillera have made great progress in understanding the phenomenon of permafrost. For the most part, this has been made possible due to temperature monitoring. However, the permafrost parameters in an area of more than 2 million square km of the mountainous regions of northeast Asia, for the most part, remain a blank spot in the scientific community. Due to the lack and insufficiency of factual materials, in 2012 the P.I. Melnikov Permafrost Institute began to take temperature measurements in the upper part of the permafrost in the central part of the Verkhoyan-Kolyma uplands, namely the Suntar-Khayat ridge. The article describes the temperature characteristics of air, surface and rocks of the active layer in the range of heights from 850 to 1821 m, in various landscape and topographic elements. For the observation period from 2012 to 2019, we obtained information on temperatures in the soils of the active layer at depths of 1 m, 3 m, 4 m, and 5 m and also air and surface temperature parameters. The availability of data on automated monitoring of rock temperatures in the active layer and the upper horizons of the layer of annual heat rotations made it possible to substantiate the most typical conditions of the temperature conditions of the permafrost zone of the characterized region. The parameters of permafrost existence and development are in favorable conditions. This is shown in the analysis of temperature data of air, surface and active layer. Soil temperatures in the active layer of annual heat rotations are most clearly represented at a depth of 1 m. Currently, on the territory of the mountain regions of Eastern Siberia, there are no more such sites for monitoring the temperature regime of soils. Information on the permafrost parameters in the region will allow us to begin the process of creating new models or checking existing forecasts and the distribution of the temperature pattern. It will also make it possible to evaluate the response of sensitive and vulnerable frozen soils of mountain regions to climate change.
This paper reviews and analyses the past 20 years of change and variability of European mountain permafrost in response to climate change based on time series of ground temperatures along a south-north transect of deep boreholes from Sierra Nevada in Spain (37 degrees N) to Svalbard (78 degrees N), established between 1998 and 2000 during the EU-funded PACE (Permafrost and Climate in Europe) project. In Sierra Nevada (at the Veleta Peak), no permafrost is encountered. All other boreholes are drilled in permafrost. Results show that permafrost warmed at all sites down to depths of 50 m or more. The warming at a 20 m depth varied between 1.5 degrees C on Svalbard and 0.4 degrees C in the Alps. Warming rates tend to be less pronounced in the warm permafrost boreholes, which is partly due to latent heat effects at more ice-rich sites with ground temperatures close to 0 degrees C. At most sites, the air temperature at 2 m height showed a smaller increase than the near-ground-surface temperature, leading to an increase of surface offsets (SOs). The active layer thickness (ALT) increased at all sites between c. 10% and 200% with respect to the start of the study period, with the largest changes observed in the European Alps. Multi-temporal electrical resistivity tomography (ERT) carried out at six sites showed a decrease in electrical resistivity, independently supporting our conclusion of ground ice degradation and higher unfrozen water content.
Permafrost plays an important role in numerous environmental processes at high latitudes and in high mountain areas. The identification of mountain permafrost, particularly in the discontinuous permafrost regions, is challenging due to limited data availability and the high spatial variability of controlling factors. This study focuses on mountain permafrost in a data-scarce environment of northern Mongolia, at the interface between the boreal forest and the dry steppe mid-latitudes. In this region, the ground temperature has been increasing continuously since 2011 and has a high spatial variability due to the distribution of incoming solar radiation, as well as seasonal snow and vegetation cover. We analyzed the effect of these controlling factors to understand the climate-permafrost relationship based on in situ observations. Furthermore, mean ground surface temperature (MGST) was calculated at 30-m resolution to predict permafrost distribution. The calculated MGST, with a root mean square error of +/- 1.4 degrees C, shows permafrost occurrence on north-facing slopes and at higher elevations and absence on south-facing slopes. Borehole temperature data indicate a serious wildfire-induced permafrost degradation in the region; therefore, special attention should be paid to further investigations on ecosystem resilience and climate change mitigation in this region.