共检索到 2

Morchella spp. (true morels) are precious edible mushrooms consumed around the world, with a delicious taste, rich nutritional value, and unique healthcare effects. Various fungi and bacteria have been reported to colonize the ascocarps of Morchella, damaging their fruiting bodies and leading to serious economic losses in cultivation. The species identification of these colonizing organisms is crucial for understanding their colonization mechanisms on morels. Slime molds, which have characteristics of both fungi and animals, can occasionally colonize crops and edible fungi. However, there have been no reports of dictyostelid cellular slime molds (dictyostelids) colonizing plants and fungi to date. In this study, we discovered that dictyostelids colonized the surface of one wild ascoma of Morchella in the forest of Chongqing, China, with the tissues being black and rotten. Macro- and micro-morphological observations, along with molecular phylogenetic analyses, identified the specimens investigated in this study as Dictyostelium implicatum and Morchella sp. Mel-21. The results provide new knowledge of dictyostelid colonization on organisms and contribute to the diversity of species colonizing true morels. Moreover, this is also the first report of dictyostelids distributed in Chongqing, China. This study enhances our insights into the life history and potential ecological significance of dictyostelids and updates their distribution area in China. Further research will be conducted to uncover the mechanisms behind the colonization observed in this study.

期刊论文 2024-10-01 DOI: 10.3390/jof10100678

As metro lines continue to expand rapidly in urban areas, the excavation of twin tunnels in shallow depths using shield tunnelling methods has become widespread. By analysing field data obtained from an actual shield tunnelling project, it has been observed that the post-ground settlement occurring over the preceding tunnel during the excavation of the following tunnel in silty sand is approximately 42% of the green field settlement, which cannot be disregarded. Accurate approximation of the post-ground settlement is useful for preventing any damage due to excessive deformation and to determine the total ground settlement profile during twin tunnel construction stage. And yet, only a few number of studies have focused on investigating and predicting the postground settlement that occurs during twin tunnel construction in soft soils. Therefore, this study develops a transparent model using the multi-gene genetic programming (MGGP) method, enabling the prediction of postground settlement during twin tunnelling. Comparative analysis demonstrates that the proposed model is userfriendly and capable of generalising to unseen data. The reliability of the MGGP-based model has been validated through sensitivity and parametric analyses. Additionally, when estimating post-settlement during twin tunnelling, it is essential to consider the spacing between twin tunnels, soil cohesion, and crucial operational parameters of the shield, such as torque and face pressure.

期刊论文 2024-10-01 DOI: 10.1016/j.tust.2024.105949 ISSN: 0886-7798
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页