Heavy metal contamination in agricultural soils is a growing environmental concern, particularly due to the increasing accumulation of cadmium (Cd) and chromium (Cr) from industrial discharge, wastewater irrigation, and excessive fertilizer use. These toxic metals severely impact crop productivity by disrupting nutrient uptake, damaging root structures, and inducing oxidative stress, which collectively inhibit plant growth and development. Maize (Zea mays L.), a globally important cereal crop, is highly susceptible to heavy metal toxicity, making it essential to develop cost-effective and sustainable mitigation strategies. Spent mushroom substrate (SMS) biochar has emerged as an effective and sustainable method due to its ability to absorb heavy metals. Spent mushroom substrate biochar improves compost quality, soil fertility, and health. Its high porosity and surface area immobilize toxic metals, reducing nutrient losses and oxidative stress in plants. Pyrolysis temperature affects its surface area, nutrient composition, and adsorption abilities. This study aims to address this gap by evaluating the effectiveness of SMS biochar at varying application rates in mitigating Cd and Cr toxicity in maize. By assessing key physiological and agronomic parameters, this research provides novel insights into the potential of SMS biochar as a sustainable soil amendment for heavy metal-contaminated soils. Five treatments, i.e., 0, 50, 100, 150 and 200B were applied under Cd and Cr toxicity in 3 replications following the completely randomized design (CRD). Results exhibited that 200B caused an increase in maize plant height (26.1%), root dry weight (99.7%), grain yield (98.2%), and chlorophyll contents (50%) over control under Cd and Cr stress. In conclusion, 200B can mitigate Cd and Cr stress in maize plants. More investigations are suggested to declare 200B as a promising amendment for mitigation of Cd and Cr stress in other crops.
Spent mushroom substrate (SMS), a waste product from mushroom cultivation, in addition to being rich in essential nutrients for crop growth, contains actively growing mushroom mycelia and metabolites that suppress some plant pathogens and pests. SMS thus has potential for fostering the suppressiveness of soil-borne pathogens of farms. This study determined the potential of using the spent Pleurotus ostreatus substrate (SPoS) to suppress the plant-parasitic nematode Radopholus similis in bananas. R. similis is the most economically important nematode in bananas worldwide. The effect of SPoS on R. similis was assessed through two in vivo (potted plants) experiments between May 2023 and June 2024. Five-month-old East African highland banana (genome AAA) plantlets that are highly susceptible to R. similis were used. In the first experiment, the plantlets were established in 3 L pots containing (i) pre-sterilized soil, (ii) pre-sterilized soil inoculated with nematodes, (iii) pre-sterilized soil mixed with 30% (v/v) SPoS, (iv) pre-sterilized soil mixed with 30% (v/v) SPoS followed by nematode inoculation, (v) SPoS without soil, and (vi) SPoS without soil inoculated with nematodes. The SPoS was already decomposed; thus, it may or may not have contained active mycelia. The nematodes were introduced two weeks after the SPoS application. In the second experiment, SPoS was introduced two weeks after nematode inoculation. The SPoS treatments without soil were not evaluated in the second experiment. Both experiments were monitored over a three-month period. Each screenhouse treatment contained four plants and was replicated thrice. In the first experiment, data were collected on changes in soil nutrient content, below- and aboveground biomass, root deaths, root necrosis due to nematode damage, and R. similis population in root tissues and soil. In the second experiment, data were collected on root deaths and the number of nematodes in root tissues and the soil. The SPoS improved crop biomass yield, reduced root damage, and colonization by R. similis. The potential of SPoS to improve the management of R. similis and banana production under field conditions needs to be determined.
Unlike many biopolymers, alpha-1,3-glucan (alpha-1,3-GLU) is water-insoluble, making it a promising candidate for the production of moisture-resistant films with applications in biodegradable packaging, biomedicine, and cosmetics. This study aimed to characterize the structural, physicochemical (water affinity, optical, mechanical), and biodegradation properties of a film made from alpha-1,3-GLU extracted from Laetiporus sulphureus. The film was fabricated through alkaline dissolution, casting, drying, washing to remove residual NaOH, and re-plasticization with a glycerol solution. FTIR and Raman spectroscopy confirmed the polysaccharide nature of the film, with predominant alpha-glycosidic linkages. The film exhibited a semi-crystalline structure and high opacity due to surface roughness resulting from polymer coagulation. Owing to re-plasticization, the film showed a high moisture content (similar to 47%), high water solubility (81.95% after 24 h), and weak mechanical properties (tensile strength = 1.28 MPa, elongation at break approximate to 10%). Its water vapor permeability (53.69 g mm m(-2) d(-1) kPa(-1)) was comparable to other glycerol-plasticized polysaccharide films reported in the literature. The film supported the adhesion of soil microorganisms and target bacteria and was susceptible to degradation by Trichoderma harzianum and endo- and exo-alpha-1,3-glucanases, indicating its biodegradability. The limitations in its mechanical strength and excessive hydration indicate the need for improvements in the composition and methods of producing alpha-1,3-GLU films.
The economic benefits of rice-wheat (RW) and rice-oilseed rape (RO) rotation in China are low. By contrast, the rice-edible mushroom Stropharia rugosoannulata (RE) rotation yields significantly higher economic benefits than RW and RO rotations. Furthermore, RE rotation can avoid air pollution caused by rice straw burning and has been widely adopted in China. Nevertheless, it remains unclear how the rotation affects CH4 and N2O emissions and global warming potential. Herein, three rice-based rotations, including RW, RO and RE rotations, were conducted in central China. The RE rotation resulted in the lowest CH4 emission from the winter crop season as well as the lowest annual N2O emission from the rice seasons among the three rotations. Moreover, compared with the RW and RO rotations, the RE rotation significantly increased the soil organic carbon content by 30.2 % and 31.2 %, and the rice yield by 16.0 % and 17.0 %, respectively. Hence, the RE rotation significantly reduced the net global warming potential by 2008.4 % and 696.5 % compared with the RW and RO rotations, respectively. Furthermore, the RE rotation improved soil fertility compared with the other two rotations. Although the RE rotation required the highest agricultural input among the three rotations, it contributed to the highest net ecosystem economic profits owing to its highest agricultural income and lowest environmental damage cost. Thus, RE rotation is an effective rice-based rotation that can use rice straws to reduce the net global warming potential and increase economic benefits and soil fertility. Therefore, RE rotation may serve as an alternative strategy for achieving sustainable agricultural production in winter fallow areas of the rice-upland region in Yangtze River Basin, China.
Farmers' open-field burning of paddy straw and the indoor burning of paddy residues as domestic fuels are significant environmental concerns since they emit dangerous pollutants. The worldwide burning of paddy residues totals 90 million tons (MT). Around 24 MT emanated from India, accounting for approximately 27% of the world's paddy straw burning. Burning residues emit smog particles, polyaromatic amines, nitrous oxides, sulfur dioxide, carbon dioxide, and carbon monoxide, methane, seriously degrading the air quality and risking human health. The combustion of dry paddy straw emits massive volumes of methane and nitrous oxide, 65 and 1.6 kilotons, respectively. This study analyzes the consequences of burning paddy residue outdoors and indoors by reviewing the relevant literature and data. Open-field burning causes air pollution, damages soil health, and harms human health. Indoor burning of paddy residues as domestic fuels harms women's and children's health in rural areas. To mitigate the adverse effects of this practice, we magnified our research using the various literature and recent statistics to link with mushroom cultivation as an alternative to paddy residue burning. Recently, India produced almost 240,000 tons of mushrooms; Odisha, Maharashtra, and Bihar are the three leading states for mushroom production. The cultivation of mushrooms is considered advantageous for both health and the environment. This study has concentrated on mushrooms' economic potential, medicinal value, and health benefits.
Mycelium-based composites are a promising avenue for innovating sustainable materials from the hyphae of fungi. This study focuses on the use of fibers from four local fungal species, namely, Pleurotus ostreatus, Pleurotus sajor-caju (Fr. Singer), Auricularia auricula-judae, and Schizophyllum commune Fr., to produce mycelium-based composites from water hyacinth. An inoculum of each of the mushroom species was cultivated on PDA medium at 25 and 30 degrees C to determine the optimal temperature based on the growth rate. The obtained optimal condition was used to grow the fungi on water hyacinth (WH) mixed with rice bran in different proportions (100% WH, 70% WH, and 50% WH) with various numbers of fungal inocula (10, 20, and 30 plugs). The obtained composites were coated with a solution of either starch, chitosan, or epoxy resin. Schizophyllum commune Fr. exhibited the highest growth rate and fiber density, with a growth rate of 1.45 +/- 1.92 mm/day at 30 degrees C. Ten inocula of Schizophyllum commune Fr. incubated at 30 degrees C for seven days on a mixture of 50% WH and 50% rice bran gave the optimal composite. Coating the obtained composite with chitosan improved its mechanical properties, but coating it with epoxy resin improved its water absorbency. Buried in soil, the composite coated with a chitosan solution decomposed within 30 days. The results indicate that Schizophyllum commune Fr. can be used as a binder to produce mycelial composites on a substrate of WH mixed with rice bran. The implications of these results will enable the further development and tuning of mushroom-based materials, especially for the production of sustainable bio-construction materials derived from local mushrooms and bio-waste.