This study aims to construct essential information on the pests attacking Cnidium officinale Makino, which is one of the most important medicinal plants in Korea and neighboring countries. Based on the current survey, a total of 12 species were identified, including three above-ground pests attacking flowers, leaves, and stems, as well as ten soil pests attacking roots. In the vertical distribution of damaged roots, the dominant species is bulb mite (Rhizoglyphus robini) followed by onion maggot (Delia antiqua). Based on this study and the previous literature, the total number of species of pests reported to attack C. officinale is 36, including 3 on flowers, 16 on leaves, 6 on stems, and 11 on roots. We also investigated and compiled a list of natural enemies based on all available information and the current study, totaling 14 species. Parasitus sp., Macrocheles glaber, and Smicroplectrus sp. were identified as candidate natural enemies of root pests.
Understanding the effects of landscape greening pest control modes (LGPCMs) on carbon storage and soil physicochemical properties is crucial for promoting the sustainable development of urban landscape greening. Climate change and green development have led to increased landscape pest occurrences. However, the impacts of different LGPCMs on carbon storage and soil properties remain unclear. We examined six typical LGPCMs employed in Beijing, China: chemical control (HXFZ), enclosure (WH), light trapping (DGYS), biological agent application (SWYJ), natural enemy release (SFTD), and trap hanging (XGYBQ). Field surveys and laboratory experiments were conducted to analyze their effects on carbon storage and soil physicochemical properties, and their interrelationships. The main results were as follows: (1) Different LGPCMs significantly affected carbon storage in the tree and soil layers (p 0.05). Carbon storage composition across all modes followed the following order: tree layer (64.19%-93.52%) > soil layer > shrub layer > herb layer. HXFZ exhibited the highest tree layer carbon storage (95.82 t/hm(2)) but the lowest soil layer carbon storage (6.48 t/hm(2)), while DGYS performed best in the soil, herb, and shrub layers. (2) LGPCMs significantly influenced soil bulk density (SBD), clay (SC), silt particle (SSP), sand (SS), pH, organic carbon (OC), total nitrogen (TN), and heavy metal content (lead (Pb), cadmium (Cd), mercury (Hg)). WH had the highest TN (1.37 g/kg), TP (0.84 g/kg), SC (10.71%) and SSP (42.14%); HXFZ had the highest Cd (8.98 mg/kg), but lowest OC and Pb. DGYS had the highest OC and Hg, and the lowest Cd, SC, and TP. Under different LGPCMs, the heavy metal content in soil ranked as follows: Pb > Cd > Hg. (3) There were significant differences in the relationship between carbon storage and soil physicochemical properties under different LGPCMs. A significant positive correlation was observed between the soil layer carbon storage, TN, and OC, while significant negative correlations were noted between SS and SC as well as SSP. Under SFTD, the tree layer carbon storage showed a negative correlation with Cd, while under DGYS, it correlated negatively with pH and Hg. In summary, While HXFZ increased the short-term tree layer carbon storage, it reduced carbon storage in the other layers and damaged soil structure. Conversely, WH and DGYS better supported carbon sequestration and soil protection, offering more sustainable control strategies. We recommend developing integrated pest management focusing on green control methods, optimizing tree species selection, and enhancing plant and soil conservation management. These research results can provide scientific guidance for collaborative implementation of pest control and carbon sequestration in sustainable landscaping.