共检索到 10

Arctic regions are highly impacted by the global temperature rising and its consequences and influences on the thermo-hydro processes and their feedbacks. Theses processes are especially not very well understood in the context of river-permafrost interactions and permafrost degradation. This paper focuses on the thermal characterization of a river-valley system in a continuous permafrost area (Syrdakh, Yakutia, Eastern Siberia) that is subject to intense thawing, with major consequences on water resources and quality. We investigated this Yakutian area through two transects crossing the river using classical tools such as in-situ temperature measurements, direct active layer thickness estimations, unscrewed aerial vehicle (UAV) imagery, heat transfer numerical experiments, Ground-Penetrating Radar (GPR), and Electrical Resistivity Tomography (ERT). Of these two transects, one was closely investigated with a long-term temperature time series from 2012 to 2018, while both of them were surveyed by geophysical and UAV data acquisition in 2017 and 2018. Thermodynamical numerical simulations were run based on the long-term temperature series and are in agreement with river thermal influence on permafrost and active layer extensions retrieved from GPR and ERT profiles. An electrical resistivity-temperature relationship highlights the predominant role of water in such a complicated system and paves the way to coupled thermo-hydro-geophysical modeling for understanding permafrost-river system evolution.

期刊论文 2023-05-11 DOI: 10.3390/rs15102524

Climate warming has significantly changed the near-surface soil freeze state, significantly impacting terrestrial ecosystems and regional agroforestry production. As Northeast China (NEC) is highly sensitive to climate change, this study introduces the concept of velocity to analyze the spatial pattern of frozen days (F-DAY), onset date of soil freeze (F-ON), offset date of soil freeze (F-OFF), and number of soil freeze/thaw cycles in spring (F-TC) in NEC from 1979 to 2020. We observed that the velocity changes of F-DAY, F-ON, and F-TC in croplands were significantly higher than those in forests (difference > 1 km yr(-1)), with the fastest velocity changes found in the cropland of the Songnen Plain. The highest velocity of FOFF was found in the forests of the Greater Khingan Range. In most study areas (> 60%), the isoline of F-DAY/F-ON/F-OFF/F-TC showed a northward movement. The isoline of F-DAY/F-ON/F-OFF/ F-TC moved in the cold direction in each cropland region (Sanjiang, Songnen, and Liaohe River Plains) and forest regions (Greater Khingan and Lesser Khingan Ranges, and the Changbai Mountains). The results of the quantitative analysis indicate that air temperature (T-A) had a more significant effect on the velocity change of F-DAY and F-ON in cropland, whereas snowpack is the dominant factor in forests. In both forests and croplands, the main factor affecting the velocity of F-OFF was snowpack, and T(A )mainly affected the F-TC. This study is significant for formulating regional climate change countermeasures and maintaining ecological security in cold regions.

期刊论文 2022-11-01 DOI: 10.1016/j.jenvman.2022.116022 ISSN: 0301-4797

Global warming may result in increased polar amplification, but future temperature changes under different climate change scenarios have not been systematically investigated over Antarctica. An index of Antarctic amplification (AnA) is defined, and the annual and seasonal variations of Antarctic mean temperature are examined from projections of the Coupled Model Intercomparison Project Phase 6 (CMIP6) under scenarios SSP119, SSP126, SSP245, SSP370 and SSP585. AnA occurs under all scenarios, and is strongest in the austral summer and autumn, with an AnA index greater than 1.40. Although the warming over Antarctica accelerates with increased anthropogenic forcing, the magnitude of AnA is greatest in SSP126 instead of in SSP585, which may be affected by strong ocean heat uptake in high forcing scenario. Moreover, future AnA shows seasonal difference and regional difference. AnA is most conspicuous in the East Antarctic sector, with the amplification occurring under all scenarios and in all seasons, especially in austral summer when the AnA index is greater than 1.50, and the weakest signal appears in austral winter. Differently, the AnA over West Antarctica is strongest in austral autumn. Under SSP585, the temperature increase over the Antarctic Peninsula exceeds 0.5 degrees C when the global average warming increases from 1.5 degrees C to 2.0 degrees C above pre-industrial levels, except in the austral summer, and the AnA index in this region is strong in the austral autumn and winter. The projections suggest that the warming rate under different scenarios might make a large difference to the future AnA.

期刊论文 2022-06-01 DOI: http://dx.doi.org/10.1007/s11629-022-7646-5 ISSN: 1672-6316

Greenhouse gases (GHGs) released from permafrost regions may have a positive feedback to climate change, but there is much uncertainty about additional warming from the permafrost carbon cycle. One of the main reasons for this uncertainty is that the observation data of large-scale GHG concentrations are sparse, especially for areas with rapid permafrost degradation. We selected the Mongolian Plateau as the study area. We first analyzed the active layer thickness and ground temperature changes using borehole observations. Based on ground observation data, we assessed the applicability of Greenhouse Gases Observing Satellite (GOSAT) carbon dioxide (CO2) and methane (CH4) datasets. Finally, we analyzed the temporal and spatial changes in near-surface CO2 and CH4 concentrations from 2010 to 2017 and their patterns in different permafrost regions. The results showed that the Mongolian permafrost has been experiencing rapid degradation. The annual average near-surface CO2 concentration increased gradually between 2.19 ppmv/yr and 2.38 ppmv/yr, whereas the near-surface CH4 concentration increased significantly from 7.76 ppbv/yr to 8.49 ppbv/yr. There were significant seasonal variations in near-surface CO2 and CH4 concentrations for continuous, discontinuous, sporadic, and isolated permafrost zones. The continuous and discontinuous permafrost zones had lower near-surface CO2 and CH4 concentrations in summer and autumn, whereas sporadic and isolated permafrost zones had higher near-surface CO2 and CH4 concentrations in winter and spring. Our results indicated that climate warming led to rapid permafrost degradation, and carbon-based GHG concentrations also increased rapidly in Mongolia. Although, GHG concentrations increased at rates similar to the global average and many factors can account for their changes, GHG concentration in the permafrost regions merits more attention in the future because the spatiotemporal distribution has indicated a different driving force for regional warming. (C) 2021 Elsevier B.V. All rights reserved.

期刊论文 2021-12-15 DOI: 10.1016/j.scitotenv.2021.149433 ISSN: 0048-9697

The impact of permafrost thaw on hydrologic, thermal, and biotic processes remains uncertain, in part due to limitations in subsurface measurement capabilities. To better understand subsurface processes in thermokarst environments, we collocated geophysical and biogeochemical instruments along a thaw gradient between forested permafrost and collapse-scar bogs at the Alaska Peatland Experiment site near Fairbanks, Alaska. Ambient seismic noise monitoring provided continuous high-temporal resolution measurements of water and ice saturation changes. Maps of seismic velocity change identified areas of large summertime velocity reductions nearest the youngest bog, indicating potential thaw and expansion at the bog margin. These results corresponded well with complementary borehole nuclear magnetic resonance measurements of unfrozen water content with depth, which showed permafrost soils nearest the bog edges contained the largest amount of unfrozen water along the study transect, up to 25% by volume. In situ measurements of methane within permafrost soils revealed high concentrations at these bog-edge locations, up to 30% soil gas. Supra-permafrost talik zones were observed at the bog margins, indicating talik formation and perennial liquid water may drive lateral bog expansion and enhanced permafrost carbon losses preceding thaw. Comparison of seismic monitoring with wintertime surface carbon dioxide fluxes revealed differential responses depending on time and proximity to the bogs, capturing the controlling influence of subsurface water and ice on microbial activity and surficial emissions. This study demonstrates a multidisciplinary approach for gaining new understanding of how subsurface physical properties influence greenhouse gas production, emissions, and thermokarst development.

期刊论文 2021-06-01 DOI: 10.1029/2021JF006104 ISSN: 2169-9003

The acceleration of permafrost thaw due to warming, wetting, and disturbance is altering circumpolar landscapes. The effect of thaw is largely determined by ground ice content in near-surface permafrost, making the characterization and prediction of ground ice content critical. Here we evaluate the spatial and stratigraphic variation of near-surface ground ice characteristics in the dominant forest types in the North Slave region near Yellowknife, Northwest Territories, Canada. Physical variation in the permafrost was assessed through cryostructure, soil properties, and volumetric ice content, and relationships between these parameters were determined. Near-surface ground ice characteristics were contrasted between forest types. In black spruce forests the top of the permafrost was ice-rich and characterized by lenticular and ataxitic cryostructures, indicating the presence of an intermediate layer. Most white spruce/birch forests showed similar patterns; however, an increase in the active layer thickness and permafrost thaw at some sites have eradicated the transition zone, and the large ice lenses encountered at depth reflect segregated ground ice developed during initial downward aggradation of permafrost. Our findings indicate that white spruce/birch terrain will be less sensitive than black spruce forests to near-surface permafrost thaw. However, if permafrost thaws completely, white spruce/birch terrain will probably be transformed into wetland-thaw lake complexes due to high ground ice content at depth.

期刊论文 2021-01-01 DOI: 10.1002/ppp.2085 ISSN: 1045-6740

The subsurface structure of permafrost is of high significance to forecast landscape dynamics and the engineering stability of infrastructure under human impacts and climate warming, which is a modern challenge for Arctic communities. Application of the non-destructive method of geo-penetrating radar (GPR) survey is a promising way to study it. The study program, which could be used for planning and monitoring of measures of adaptation of Arctic communities to environmental changes is provided in this paper. The main principle was to use etalons of coupled radargrams and archive geological data to interpret changes in the permafrost structure from a grid of 5-10 m deep GPR transects. Here, we show the application of GPR to reconstruct and predict hazards of activation of cryogenic processes from the spatial variability in the structure of permafrost. The cumulative effects of the village and climate change on permafrost were manifested in changes in the active layer thickness from 0.5-1.0 m to up to 3.5 m. Despite that the permafrost degradation has declined due to the improved maintenance of infrastructure and the effects of ground filling application, the hazards of heaving and thermokarst remain for the built-up area in Lorino.

期刊论文 2020-02-01 DOI: 10.3390/geosciences10020057

Surface temperature is critical for the simulation of climate change impacts on the ecology, environment, and particularly permafrost in the cryosphere. Virtually, surface temperatures are different in the near-surface air temperature (T-a) measured at a screen-height of 1.5-2 m, the land surface temperature (LST) on the top canopy layer, and the ground surface temperature (GST) 0-5 cm beneath the surface cover. However, not enough attention has been concentrated on the difference in these surface temperatures. This study aims at quantifying the distinction of surface temperatures by the comparisons and numerical simulations of observational field data collected in a discontinuous permafrost region on the northeastern Qinghai-Tibet Plateau (QTP). We compared the hourly, seasonal and yearly differences between T omega, IST, GST, and ground temperatures, as well as the freezing and thawing indices, the N-factors, and the surface and thermal offsets derived from these temperatures. The results showed that the peak hourly LST was reached earliest, closely followed by the hourly T-a. Mean annual LST (MALST) was moderately comparable to mean annual T-a (MAAT), and both were lower than mean annual GST (MAGST). Surface offsets (MAGST-MAAT) were all within 3.5 degrees C, which are somewhat consistent with other parts of the QTP but smaller than those in the Arctic and Subarctic regions with dense vegetation and thick, long-duration snow cover. Thermal offsets, the mean annual differences between the ground surface and the permafrost surface, were within -0.3 degrees C, and one site was even reversed, which may be relevant to equally thawed to frozen thermal conductivities of the soils. Even with identical T-a (comparable to MAAT of -3.27 and -3.17 degrees C), the freezing and thawing processes of the active layer were distinctly different, due to the complex influence of surface characteristics and soil, textures. Furthermore, we employed the Geophysical Institute Permafrost Lab (GIPL) model to numerically simulate the dynamics of ground temperature driven by T-a, LST, and GST, respectively. Simulated results demonstrated that GST was a reliable driving indicator for the thermal regime of frozen ground, even if no thermal effects of surface characteristics were taken into account. However, great biases of mean annual ground temperatures, being as large as 3 degrees C, were induced on the basis of simulations with LST and T-a when the thermal effect of surface characteristics was neglected. We conclude that quantitative calculation of the thermal effect of surface characteristics on GST is indispensable for the permafrost simulations based on the T-a datasets and the LST products-that derived from thermal infrared remote sensing.

期刊论文 2018-02-15 DOI: 10.1016/j.geoderma.2017.09.037 ISSN: 0016-7061

A quantification of rock weathering by freeze-thaw processes in alpine rocks requires at least rock temperature data in high temporal resolution, in high quality, and over a sufficient period of time. In this study up to nine years of rock temperature data (2006-2015) from eleven rock monitoring sites in two of the highest mountain ranges of Austria were analyzed. Data were recorded at a half-hourly or hourly logging interval and at rock depths of 3, 10, and 30-40 cm. These data have been used to quantify mean conditions, ranges, and relationships of the potential near-surface weathering by freeze-thaw action considering volumetric-expansion of ice and ice segregation. For the former, freeze-thaw cycles and effective freeze-thaw cycles for frost shattering have been considered. For the latter, the intensity and duration of freezing events as well as time within the frost cracking window' have been analyzed. Results show that the eleven sites are in rather extreme topoclimatic positions and hence represent some of the highest and coolest parts of Austria and therefore the Eastern Alps. Only four sites are presumably affected by permafrost. Most sites are influenced by a long-lasting seasonal snow cover. Freeze-thaw cycles and effective freeze-thaw cycles for frost shattering are mainly affecting the near-surface and are unimportant at few tens of centimeters below the rock surface. The lowest temperatures during freezing events and the shortest freezing events have been quantified at all eleven monitoring sites very close to the surface. The time within the frost cracking window decreases in most cases from the rock surface inwards apart from very cold years/sites with very low temperatures close to the surface. As shown by this study and predicted climate change scenarios, assumed warmer rock temperature conditions in the future at alpine rock walls in Austria will lead to less severe freezing events and to shorter time periods within the frost-cracking window. Statistical correlation analyses showed furthermore that the longer the duration of the seasonal snow cover, the fewer are freeze-thaw cycles, the fewer are effective freeze-thaw cycles, the longer is the mean and the maximum duration of freezing events, and the lower is the mean annual ground temperature. The interaction of the winter snow cover history and the winter thermal regime has a complex effect on the duration of the frost cracking window but also on the number of freeze-thaw cycles as shown by a conceptual model. Predicted future warmer and snow-depleted winters in the European Alps will therefore have a complex impact on the potential weathering of alpine rocks by frost action which makes potential weathering predictions difficult. Neglecting rock moisture and rock properties in determining rock weathering limits the usefulness of solely rock temperature data. However, rock temperature data allow getting an estimate about potential weathering by freeze-thaw action which is often substantially more than previously known. (c) 2017 Elsevier B.V. All rights reserved.

期刊论文 2017-11-01 DOI: 10.1016/j.geomorph.2017.08.020 ISSN: 0169-555X

High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing and degradation of permafrost which in turn has affected ecosystems, socioeconomics, and the carbon cycle of high latitudes. Here we overcome complex interactions among surface and subsurface conditions to map near-surface permafrost through decision and regression tree approaches that statistically and spatially extend field observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and subsurface biophysical characteristics. The data fusion approach generated medium-resolution (30-m pixels) maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates throughout mainland Alaska. Our calibrated models (overall test accuracy of similar to 85%) were used to quantify changes in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical factors. Models indicate that near-surface permafrost underlies 38% of mainland Alaska and that near-surface permafrost will disappear on 16 to 24% of the landscape by the end of the 21st Century. Simulations suggest that near-surface permafrost degradation is more probable in central regions of Alaska than more northerly regions. Taken together, these results have obvious implications for potential remobilization of frozen soil carbon pools under warmer temperatures. Additionally, warmer and drier conditions may increase fire activity and severity, which may exacerbate rates of permafrost thaw and carbon remobilization relative to climate alone. The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assessments, and a wide-array of geophysical studies. (C) 2015 Elsevier Inc. All rights reserved.

期刊论文 2015-10-01 DOI: 10.1016/j.rse.2015.07.019 ISSN: 0034-4257
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-10条  共10条,1页