Soil erosion poses a considerable threat to ecosystem services around the world. Among these, it is extremely problematic for archaeological sites, particularly in arable landscapes where accelerated soil degradation has been widely observed. Conversely, some archaeological deposits may obtain a certain level of protection when they are covered by eroded material, thereby lessening the impacts of phenomena such as plow damage or bioturbation. As a result, detailed knowledge of the extent of colluvial deposition is of great value to site management and the development of appropriate methodological strategies. This is particularly true of battlefield sites, where the integrity of artifacts in the topsoil is of great importance and conventional metal detection (with its shallow depth of exploration) is relied upon as the primary method of investigation. Using the Napoleonic battlefield of Waterloo in Belgium as a case study, this paper explores how different noninvasive datasets can be combined with ancillary data and a limited sampling scheme to map colluvial deposits in high resolution and at a large scale. Combining remote sensing, geophysical, and invasive sampling datasets that target related phenomena across spatial scales allows for overcoming some of their respective limitations and derives a better understanding of the extent of colluvial deposition.
Slope failures are an ongoing global threat leading to significant numbers of fatalities and infrastructure damage. Landslide impact on communities can be reduced using efficient early warning systems to plan mitigation measures and protect elements at risk. This manuscript presents an innovative geophysical approach to monitoring landslide dynamics, which combines electrical resistivity tomography (ERT) and low-frequency distributed acoustic sensing (DAS), and was deployed on a slope representative of many landslides in clay rich lowland slopes. ERT is used to create detailed, dynamic moisture maps that highlight zones of moisture accumulation leading to slope instability. The link between ERT derived soil moisture and the subsequent initiation of slope deformation is confirmed by low-frequency DAS measurements, which were collocated with the ERT measurements and provide changes in strain at unprecedented spatiotemporal resolution. Auxiliary hydrological and slope displacement data support the geophysical interpretation. By revealing critical zones prone to failure, this combined ERT and DAS monitoring approach sheds new light on landslide mechanisms. This study demonstrates the advantage of including subsurface geophysical monitoring techniques to improve landslide early warning approaches, and highlights the importance of relying on observations from different sources to build effective landslide risk management strategies.
Arctic regions are highly impacted by the global temperature rising and its consequences and influences on the thermo-hydro processes and their feedbacks. Theses processes are especially not very well understood in the context of river-permafrost interactions and permafrost degradation. This paper focuses on the thermal characterization of a river-valley system in a continuous permafrost area (Syrdakh, Yakutia, Eastern Siberia) that is subject to intense thawing, with major consequences on water resources and quality. We investigated this Yakutian area through two transects crossing the river using classical tools such as in-situ temperature measurements, direct active layer thickness estimations, unscrewed aerial vehicle (UAV) imagery, heat transfer numerical experiments, Ground-Penetrating Radar (GPR), and Electrical Resistivity Tomography (ERT). Of these two transects, one was closely investigated with a long-term temperature time series from 2012 to 2018, while both of them were surveyed by geophysical and UAV data acquisition in 2017 and 2018. Thermodynamical numerical simulations were run based on the long-term temperature series and are in agreement with river thermal influence on permafrost and active layer extensions retrieved from GPR and ERT profiles. An electrical resistivity-temperature relationship highlights the predominant role of water in such a complicated system and paves the way to coupled thermo-hydro-geophysical modeling for understanding permafrost-river system evolution.
The impact of permafrost thaw on hydrologic, thermal, and biotic processes remains uncertain, in part due to limitations in subsurface measurement capabilities. To better understand subsurface processes in thermokarst environments, we collocated geophysical and biogeochemical instruments along a thaw gradient between forested permafrost and collapse-scar bogs at the Alaska Peatland Experiment site near Fairbanks, Alaska. Ambient seismic noise monitoring provided continuous high-temporal resolution measurements of water and ice saturation changes. Maps of seismic velocity change identified areas of large summertime velocity reductions nearest the youngest bog, indicating potential thaw and expansion at the bog margin. These results corresponded well with complementary borehole nuclear magnetic resonance measurements of unfrozen water content with depth, which showed permafrost soils nearest the bog edges contained the largest amount of unfrozen water along the study transect, up to 25% by volume. In situ measurements of methane within permafrost soils revealed high concentrations at these bog-edge locations, up to 30% soil gas. Supra-permafrost talik zones were observed at the bog margins, indicating talik formation and perennial liquid water may drive lateral bog expansion and enhanced permafrost carbon losses preceding thaw. Comparison of seismic monitoring with wintertime surface carbon dioxide fluxes revealed differential responses depending on time and proximity to the bogs, capturing the controlling influence of subsurface water and ice on microbial activity and surficial emissions. This study demonstrates a multidisciplinary approach for gaining new understanding of how subsurface physical properties influence greenhouse gas production, emissions, and thermokarst development.