共检索到 8

Permafrost-affected tundra soils are large carbon (C) and nitrogen (N) reservoirs. However, N is largely bound in soil organic matter (SOM), and ecosystems generally have low N availability. Therefore, microbial induced N-cycling processes and N losses were considered negligible. Recent studies show that microbial N processing rates, inorganic N availability, and lateral N losses from thawing permafrost increase when vegetation cover is disturbed, resulting in reduced N uptake or increased N input from thawing permafrost. In this review, we describe currently known N hotspots, particularly bare patches in permafrost peatland or permafrost soils affected by thermokarst, and their microbiogeochemical characteristics, and present evidence for previously unrecorded N hotspots in the tundra. We summarize the current understanding of microbial N cycling processes that promote the release of the potent greenhouse gas (GHG) nitrous oxide (N2O) and the translocation of inorganic N from terrestrial into aquatic ecosystems. We suggest that certain soil characteristics and microbial traits can be used as indicators of N availability and N losses. Identifying N hotspots in permafrost soils is key to assessing the potential for N release from permafrost-affected soils under global warming, as well as the impact of increased N availability on emissions of carbon-containing GHGs.

期刊论文 2022-09-01 DOI: 10.3390/nitrogen3030031

The aim of this work was to assess the biogeochemical role of riparian soils in the High Arctic to determine to what extent these soils may act as sources or sinks of carbon (C) and nitrogen (N). To do so, we compared two riparian areas that varied in riparian vegetation coverage and soil physical perturbation (i.e., thermo-erosion gully) in NE Greenland (74 degrees N) during late summer. Microbial soil respiration (0.4-3.2 mu mol CO2 m(-2) s(-1)) was similar to values previously found across vegetation types in the same area and increased with higher temperatures, soil column depth and soil organic C degradation. Riparian soils had low nitrate concentrations (0.02-0.64 mu g N-NO3- g(-1)), negligible net nitrification rates and negative net N mineralization rates (-0.58 to 0.33 mu g N g(-1) day(-1)), thus indicating efficient microbial N uptake due to low N availability. We did not find any effects of physical perturbation on soil respiration or on N processing, but the dissolved fraction of organic matter in the soil was one order of magnitude lower on the disturbed site. Overall, our results suggest that riparian soils are small N sources to high-Arctic streams and that a depleted dissolved organic C pool in disturbed soils may decrease exports to the adjacent streams under climate change projection.

期刊论文 2020-01-01 DOI: 10.1002/ppp.2039 ISSN: 1045-6740

Recent global warming models project a significant change in winter climate over the next few decades. The decrease in snowpack in the winter will decrease the heat insulation function of the snowpack, resulting in increased soil freeze-thaw cycles. Here, we examined the impact of winter freeze-thaw cycles on year-round dissolved nitrogen (N) and carbon (C) dynamics and their relationship with dissolved organic matter and microbial biomass in soil by conducting an in situ experimental reduction in snowpack. We investigated dissolved inorganic N (NH4+ and NO3-), dissolved organic N (DON), dissolved organic carbon (DOC), inorganic N leaching, soil microbial biomass, and microbial activities (mineralization and nitrification) in the surface soil of a northern hardwood forest located in Japan. Experimental snowpack reduction significantly increased the number of soil freeze-thaw cycles and soil frost depth. The NH4+ content of the surface soil was significantly increased by the amplified soil freeze-thaw cycles due to decreased snowpack, while the soil NO3- content was unchanged or decreased slightly. The gravimetric soil moisture, DON and DOC contents in soil and soil microbial biomass significantly increased by the snowpack removal in winter. Our results suggest that the amplified freeze-thaw cycles in soil increase the availability of DON and DOC for soil microbes due to an increase in soil freezing. The increases in both DON and DOC in winter contributed to the enhanced growth of soil microbes, resulting in the increased availability of NH4+ in winter from net mineralization following an increase in soil freeze-thaw cycles. Our study clearly indicated that snow reduction significantly increased the availability of dissolved nitrogen and carbon during winter, caused by increased soil water content due to freeze-thaw cycles in winter.

期刊论文 2019-02-01 DOI: 10.1007/s10533-019-00537-w ISSN: 0168-2563

Climate change-related increases in winter temperatures and precipitation, as predicted for eastern Canada, may alter snow cover, with consequences for soil temperature and moisture, nitrogen cycling, and greenhouse gas fluxes. To assess the effects of snow depth in a humid temperate agricultural ecosystem, we conducted a two-year field study with (1) snow removal, (2) passive snow accumulation (via snow fence), and (3) ambient snow treatments. We measured in situ N2O and CO2 fluxes and belowground soil gas concentration, and conducted denitrification and potential nitrification laboratory assays, from November through May. Snow manipulation significantly affected winter N2O dynamics. In the first winter, spring thaw N2O fluxes in snow removal plots were 31 and 48 times greater than from ambient snow and snow accumulation plots respectively. Mid-winter soil N2O concentration was also highest in snow removal plots. These effects may have been due to increased substrate availability due to greater soil frost, along with moderate gas diffusivities facilitating N2O production, in snow removal plots. In the second winter, spring thaw N2O fluxes and soil N2O concentration were greatest for ambient snow plots. Peak fluxes in ambient snow plots were 19 and 24 times greater than in snow accumulation and snow removal plots, respectively. Greater soil moisture in ambient snow plots overwinter could have facilitated denitrification both through decreased O-2 availability and increased disruption of soil aggregates during freeze-thaw cycles. Overall, results suggest that effects of changing snow cover on N cycling and N2O fluxes were not solely a direct effect of snow depth; rather, effects were mediated by both soil water content and temperature. Furthermore, the fact that treatments with greatest mid-winter belowground N2O accumulation also had greatest spring thaw N2O fluxes in both years suggests the hypothesis that high spring thaw fluxes were due not only to spring soil conditions, but also to an effect of soil conditions in frozen soils that had facilitated N2O production throughout winter.

期刊论文 2018-04-15 DOI: 10.1016/j.agee.2018.01.033 ISSN: 0167-8809

Snow cover is projected to decline during the next century in many ecosystems that currently experience a seasonal snowpack. Because snow insulates soils from frigid winter air temperatures, soils are expected to become colder and experience more winter soil freeze-thaw cycles as snow cover continues to decline. Tree roots are adversely affected by snowpack reduction, but whether loss of snow will affect root-microbe interactions remains largely unknown. The objective of this study was to distinguish and attribute direct (e.g., winter snow- and/or soil frost-mediated) vs. indirect (e.g., root-mediated) effects of winter climate change on microbial biomass, the potential activity of microbial exoenzymes, and net N mineralization and nitrification rates. Soil cores were incubated in situ in nylon mesh that either allowed roots to grow into the soil core (2mm pore size) or excluded root ingrowth (50m pore size) for up to 29months along a natural winter climate gradient at Hubbard Brook Experimental Forest, NH (USA). Microbial biomass did not differ among ingrowth or exclusion cores. Across sampling dates, the potential activities of cellobiohydrolase, phenol oxidase, and peroxidase, and net N mineralization rates were more strongly related to soil volumetric water content (P<0.05; R-2=0.25-0.46) than to root biomass, snow or soil frost, or winter soil temperature (R-2<0.10). Root ingrowth was positively related to soil frost (P<0.01; R-2=0.28), suggesting that trees compensate for overwinter root mortality caused by soil freezing by re-allocating resources towards root production. At the sites with the deepest snow cover, root ingrowth reduced nitrification rates by 30% (P<0.01), showing that tree roots exert significant influence over nitrification, which declines with reduced snow cover. If soil freezing intensifies over time, then greater compensatory root growth may reduce nitrification rates directly via plant-microbe N competition and indirectly through a negative feedback on soil moisture, resulting in lower N availability to trees in northern hardwood forests.

期刊论文 2016-12-01 DOI: 10.1002/ecy.1599 ISSN: 0012-9658

Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming is under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.

期刊论文 2015-07-21 DOI: 10.3389/fmicb.2015.00746 ISSN: 1664-302X

The nitrate (NO3-) dual isotope approach was applied to snowmelt, tundra active layer pore waters, and underlying permafrost in Barrow, Alaska, USA, to distinguish between NO3- derived from atmospheric deposition versus that derived from microbial nitrification. Snowmelt had an atmospheric NO3- signal with N-15 averaging -4.81.0 (standard error of the mean) and O-18 averaging 70.21.7. In active layer pore waters, NO3- primarily occurred at concentrations suitable for isotopic analysis in the relatively dry and oxic centers of high-centered polygons. The average N-15 and O-18 of NO3- from high-centered polygons were 0.5 +/- 1.1 parts per thousand and -4.1 +/- 0.6 parts per thousand, respectively. When compared to the N-15 of reduced nitrogen (N) sources, and the O-18 of soil pore waters, it was evident that NO3- in high-centered polygons was primarily from microbial nitrification. Permafrost NO3- had N-15 ranging from approximately -6 parts per thousand to 10 parts per thousand, similar to atmospheric and microbial NO3-, and highly variable O-18 ranging from approximately -2 parts per thousand to 38 parts per thousand. Permafrost ice wedges contained a significant atmospheric component of NO3-, while permafrost textural ice contained a greater proportion of microbially derived NO3-. Large-scale permafrost thaw in this environment would release NO3- with a O-18 signature intermediate to that of atmospheric and microbial NO3. Consequently, while atmospheric and microbial sources can be readily distinguished by the NO3- dual isotope technique in tundra environments, attribution of NO3- from thawing permafrost will not be straightforward. The NO3- isotopic signature, however, appears useful in identifying NO3- sources in extant permafrost ice.

期刊论文 2015-06-01 DOI: 10.1002/2014JG002883 ISSN: 2169-8953

Our novel study examines landscape biogeochemical evolution following deglaciation and permafrost change in Svalbard by looking at the productivity of various micro-catchments existing within one watershed. It also sheds light on how moraine, talus and soil environments contribute to solute export from the entire watershed into the downstream marine ecosystem. We find that solute dynamics in different micro-catchments are sensitive to abiotic factors such as runoff volume, water temperature, geology, geomorphological controls upon hydrological flowpaths and landscape evolution following sea level and glacial changes. Biotic factors influence the anionic composition of runoff because of the importance of microbial SO42- and NO3- production. The legacy of glaciation and its impact upon sea level changes is shown to influence local hydrochemistry, allowing Cl- to be used as a tracer of thawing permafrost that has marine origins. However, we show that a glacial signal' dominates solute export from the watershed. Therefore, although climatically driven change in the proglacial area has an influence on local ecosystems, the biogeochemical response of the entire watershed is dominated by glacially derived products of rapid chemical weathering. Consequently, only the study of micro-catchments existing within watersheds can uncover the landscape response to contemporary climate change. Copyright (c) 2014 John Wiley & Sons, Ltd.

期刊论文 2015-03-15 DOI: 10.1002/hyp.10263 ISSN: 0885-6087
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页