Atmospheric ammonia (NH3) has multiple impacts on the environment, climate change, and human health. China is the largest emitter of NH3 globally, with the dynamic inventory of NH3 emissions remaining uncertain. Here, we use the second national agricultural pollution source censuses, integrated satellite data, 15N isotope source apportionment, and multiple models to better understand those key features of NH3 emissions and its environmental impacts in China. Our results show that the total NH3 emissions were estimated to be 11.2 +/- 1.1 million tonnes in 2020, with three emission peaks in April, June, and October, primarily driven by agricultural sources, which contributed 74% of the total emissions. Furthermore, employing a series of quantitative analyses, we estimated the contribution of NH3 emissions to ecosystem impacts. The NH3 emissions have contributed approximately 22% to secondary PM2.5 formation and a 16.6% increase in nitrogen loading of surface waters, while ammonium deposition led to a decrease in soil pH by 0.0032 units and an increase in the terrestrial carbon sink by 44.6 million tonnes in 2020. Reducing agricultural NH3 emissions in China would contribute to the mitigation of air and water pollution challenges, saving damage costs estimated at around 22 billion US dollars due to avoided human and ecosystem health impacts.
Nitrogen deposition and drought significantly influence plant growth and soil physicochemical properties. This study investigates the effects of nitrogen deposition and water stress on the growth and physiological responses of Quercus dentata, and how these factors interact to influence the overall productivity. Two-year-old potted seedlings were selected to simulate nitrogen deposition and water stress. Nitrogen was applied at rates of 0 kgha-1year-1 (N0) and 150 kgha-1year-1 (N150). The levels of water stress corresponded to 80% (W80), 50% (W50), and 20% (W20) of soil saturation moisture content. High nitrogen (N150) significantly increased stem elongation and stem diameter by enhancing photosynthetic parameters, including P n (W80) and G s (W50), and maintained higher water use efficiency. Under drought conditions, nitrogen enhanced leaf water content, stabilized electrical conductivity, regulated antioxidant enzyme activity, and increased the accumulation of proline. However, under severe drought, nitrogen did not significantly improve biomass, highlighting the critical role of water availability. Additionally, increased nitrogen levels enhanced soil enzyme activity, facilitated the uptake of crucial nutrients like K and Zn. Mantel tests indicated significant correlations between soil enzyme activity, water use efficiency, and leaf Fe content, suggesting that nitrogen deposition altered nutrient uptake strategies in Q. dentata to sustain normal photosynthetic capacity under water stress. This study demonstrates that nitrogen deposition substantially enhances the growth and physiological resilience of Q. dentata under W50 by optimizing photosynthetic efficiency, water use efficiency, and nutrient uptake. However, the efficacy of nitrogen is highly dependent on water availability, highlighting the necessity of integrated nutrient and water management for plant growth.
Acid rain and nitrogen deposition resulting from fossil fuel combustion and atmospheric NH3 enrichment have inflicted significant damage to ecosystems on a global scale. However, their specific impacts on forest soil ecosystems, particularly in soil carbon (C), nitrogen (N), and phosphorus (P) cycling, remain unclear. For this study metagenomic sequencing was employed to study the effects of simulated acid rain and nitrogen deposition on microbial functional genes in a subtropical plantation in the Yangtze River Delta region. Our findings indicated that acid rain and nitrogen deposition did not have significant impacts on overall functional Shannon diversity. However, acid rain treatments did alter microbial functional structures, particularly as relates to C, N, and P cycling. Notably, the soil pH had a significant correlation with microbial functional profiles. In the absence of nitrogen deposition, acid rain led to an increase in the relative abundance of starch and carbon monoxide (CO) oxidation processes, while reducing the relative abundance of multiple systems and reductive tricarboxylic acid (rTCA) pathway processes. Further, acid rain decreased the relative abundance of nitrogen fixation and nitrification processes, as exemplified by hao, nirK, and norZ genes, while increasing the relative abundance of norC and narI genes. Additionally, acid rain was associated with a decrease in the relative abundance of P starvation regulation and inorganic P solubilization processes. However, N deposition did not have a significant effect on microbial functional processes related to C, N, and P cycling. Our study emphasized the negative impacts of short-term acid rain on soil N and P cycling in a subtropical plantation, which surpassed that of short-term N deposition.
The effects of elevated CO2 concentration on the defensive ability of two Alnus species (A. maximowiczii, A. hirsuta) against herbivory attacks (alder leaf beetle; Agelastica coerulea) were investigated using a free-air CO2 enrichment. Elevated CO2 significantly affected consumed leaf area index (CLI) of A. maximowiczii but soil fertility did not, while more significant effects on CLI of A. hirsuta were found in both CO2 and soil fertility. As found in natural conditions, A. hirsuta was grazed five times more than A. maximowiczii in both CO2 levels, which was explained with the low condensed tannin (CT) concentration of the leaves. The value of leaf mass per area in fertile soil was 10 g m(-2) lower than that in infertile soil under ambient CO2 in July. Leaf C/N ratio was not affected by elevated CO2 for both species but that of A. hirsuta was little higher in infertile soil when compared to fertile soil in July. CT of A. maximowiczii tended to increase in September under elevated CO2. CT of A. hirsuta was higher in infertile soil than in fertile soil in July and showed an overall decrease in September compared to July. Nitrogen-fixing activity by a nodule of Frankia sp. on A. maximowiczii was higher in elevated CO(2)treatments than in ambient CO(2)independent of soil fertility. As a result of changes in these parameters, except for fertile soil, the peak of the herbivorous damage was later in elevated CO2 for the Alnus species than in the control.
Atmospheric nitrogen deposition is an important contributor to global and regional nitrogen cycles, and atmospheric nitrogen could be a critical limit nutrient for remote areas. In this study, nitrogen species compositions, deposition fluxes, and historical records in the mountains of Western China, including the Tibetan Plateau, were determined from snowpit and ice core samples collected from mountain glaciers. The mean concentration of total dissolved nitrogen (TDN) in the snowpit samples was 12.6 mu mol L-1 (8.0-17.8 mu mol L-1) and comprised 59% ammonium nitrogen, 35% nitrate nitrogen, and similar to 6% dissolved organic nitrogen. The deposition of nitrogen species, except organic nitrogen (likely due to its low concentrations and/or different origination), varied seasonally in a similar way based on the records of the snowpit profile. Based on monthly surface sample collection in one of the glaciers, the mass concentration and composition of nitrogen species varied monthly, mainly because of melting processes. During melting, the inorganic nitrogen content could be lost significantly, whereas the dissolved organic nitrogen concentration could be enriched because of microbial activity. For the historical records, the nitrogen deposition in mountain areas of Western China after 1960s was increased by about one time of that during 1900-1950 and was dominated by ammonium-N. From the snowpit data, we estimated the total dissolved nitrogen deposition flux at 0.56-1.3 (mean 0.88) kg ha(-1) a(-1) in the mountain area of Western China. These results could improve our understanding of nitrogen deposition and cycle in the mountain areas of Western China.
In the Tibetan Plateau grassland ecosystems, nitrogen (N) availability is rising dramatically; however, the influence of higher N on the arbuscular mycorrhizal fungi (AMF) might impact on plant competitive interactions. Therefore, understanding the part played by AMF in the competition between Vicia faba and Brassica napus and its dependence on the N-addition status is necessary. To address this, a glasshouse experiment was conducted to examine whether the grassland AMF community's inocula (AMF and NAMF) and N-addition levels (N-0 and N-15) alter plant competition between V. faba and B. napus. Two harvests took day 45 (1(st) harvest) and day 90 (2(nd) harvest), respectively. The findings showed that compared to B. napus, AMF inoculation significantly improved the competitive potential of the V. faba. In the occurrence of AMF, V. faba was the strongest competitor being facilitated by B. napus in both harvests. While under N-15, AMF significantly enhanced tissue N:P ratio in B. napus mixed-culture at 1(st) harvest, the opposite trend was observed in 2(nd) harvest. The mycorrhizal growth dependency slightly negatively affected mixed-culture compared to monoculture under both N-addition treatments. The aggressivity index of AMF plants was higher than NAMF plants with both N-addition and harvests. Our observation highlights that mycorrhizal associations might facilitate host plant species in mixed-culture with non-host plant species. Additionally, interacting with N-addition, AMF could impact the competitive ability of the host plant not only directly but also indirectly, thereby changing the growth and nutrient uptake of competing plant species.
The contributions of long-lived nitrous oxide (N2O) to global climate and environment have received increasing attention. Especially, atmospheric nitrogen (N) deposition has substantially increased in recent decades due to the extensive use of fossil fuels in industry, which strongly stimulates the N2O emissions of terrestrial ecosystem. Several models have been developed to simulate the impacts of environmental factors on N2O emission from soil, but there are still large differences in the simulations of N2O emission and their responses to atmospheric deposition over global or regional scales. Using observations from N addition experiments in a subtropical forest, this study compared five widely-used N2O modules or algorithms (i.e. the N2O modules of DayCENT, PnET-NDNDC and DyN, and the algorithm of NOE and NGAS) to investigate their performances for reproducing N2O emission, and especially the impacts of two forms of N additions (i.e. NH4+-N and NO3--N, respectively) of two levels (low and high) on N2O emission. In general, the five modules reproduced the seasonal variations of N2O emission. Under the high levels of N addition compared to low ones for both NH4+-N and NO3--N, however, not all modules can reproduce larger N2O emission. Relatively larger N2O emissions in measurements due to NH4+N compared to NO3--N additions were not indicated neither in all the modules. Moreover, there were substantial differences in simulating the ratios of N2O emission from nitrification and denitrification processes due to disagreements in the structure of these modules or algorithms. The comparison highlights the need to improve the representation of N2O production and diffusion processes. At the same time, it also highlights the application of WFPS in the model methodology as a key scheme that mediates the two microbial processes, i.e. nitrification and denitrification, could probably improve the performances of N2O models in future research.