共检索到 1

River riparian basins play a crucial role in mitigating greenhouse gas (GHG) emissions through carbon sequestration and nitrogen sinks. However, increased ecological stresses led to the release of CO2, CH4 and N2O. This study aimed to investigate how extreme temperatures, water levels, moisture content, land use changes and soil composition influence GHG emissions in the riparian corridor and to recommend mitigation techniques. It was carried out at the Yangtze River Riparian zone, China, using soil column testing. It used soil column testing. The results showed that extreme temperatures caused the highest emissions of CO2 (29-45%), CH4 (24-43%) and N2O (27-33%). This was due to increased soil temperatures and accelerated organic carbon/nitrogen decomposition. Conversely, control and wet-dry cycles absorbed CO2 (1-3%), CH4 (3-10%) and N2O (1-21%) by improving soil aeration, increased oxygen availability, soil structure, stable water table and low temperature change. Grasses in riparian areas also improved carbon sinks. Highest water levels had lowest gas concentrations and emissions due to low oxygen level. Adaptive wet-dry cycles, grass cover and better water table management can restore riparian areas, maintain soil moisture, balance soil carbon/nitrogen levels and mitigate climate change by improving soil quality. Dissolved organic matter fluorescence (DOMFluor) components are essential for soil carbon dynamics, aquatic biome safety, nutrient cycling and ecological balance in riparian zones. The study recommends implementing restoration practices, managing soil moisture, afforestation, regulating temperature and monitoring water tables to mitigate GHG emissions and address climate change. Future policies should focus on promoting resilient land use and ecosystems.

期刊论文 2025-04-01 DOI: 10.1002/eco.70033 ISSN: 1936-0584
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页