A novel framework for nonlinear thermal elastic-viscoplastic (TEVP) constitutive relationships was proposed in this study, incorporating three distinct thermoplasticity mechanisms. These four TEVP formulations, combined with an existing TEVP constitutive equation presented in the companion paper, were integrated into a coupled consolidation and heat transfer (CHT) numerical model. The CHT model accounts for large strain, soil selfweight, creep strains, thermal-induced strains, the relative velocity of fluid and solid phases, varying hydraulic conductivity and compressibility during consolidation process, time-dependent loading, and heat transfer, including thermal conduction, thermo-mechanical dispersion, and advection. The performance of CHT model, incorporating different TEVP constitutive equations, was evaluated through comparing the simulation results with measurements from laboratory oedometer tests. Simulation results, including settlement, excess pore pressure and temperature profiles, showed good agreement with the experimental data. All four TEVP constitutive relationships produced identical results for the consolidation behavior of soil that in the oedometer tests. The TEVP constitutive equations may not have a significant effect on the heat transfer in soil layers because of the identical performance on simulating soil compression. The CHT model, incorporating the four TEVP constitutive equations, was then used to investigate the long-term consolidation and heat transfer behavior of a four layer soil stratum under seasonally cyclic thermal loading in a field test, with excellent agreement observed between simulated results and measured data.
Tunneling-induced horizontal strains for buildings with discontinuous foundations are notable and may pose significant risks to the integrity of nearby structures. This paper presents results from a series of numerical models investigating the response of framed buildings on separated footings to tunnel construction in sand. The study examines a two-story, elastic frame with varying building transverse width, eccentricity, and first story height, subjected to tunneling-induced displacements; footing embedment depth and tunnel cover depth are also varied. Results show that tunneling-induced horizontal displacements for separated footings are significant, with greater footing horizontal displacements occurring at deeper footing embedment depths. Building width and eccentricity also influence soil-footing interaction, particularly in determining the values of footing displacements and the distribution of horizontal strains. An increase in footing embedment depth slightly increases shear distortion but significantly increases horizontal strains. The presented modification factors for angular distortion and horizontal strains align well with empirical envelopes, with the horizontal strain modification factor being sensitive to the relative soil-footing stiffness. This research highlights the importance of considering horizontal strains and realistic foundation embedment depth in the damage assessment for buildings with discontinuous foundations due to tunnel construction.
This study evaluates the dynamic behavior of a subsea railway tunnel during an earthquake, considering ground conditions and seismic wave characteristics using the finite difference modeling method. A comprehensive ground-tunnel structure system model was constructed to analyze the structure's response during earthquakes, yielding significant results. Analysis of lining stress values in the subsea tunnel revealed that the maximum compressive stress in the soil part is significantly larger than in the rock part in composite ground conditions, and the maximum compressive stress in the fractured zone is increased by up to 10 times compared to the rock zone. In addition, a seismic fragility curve for subsea tunnels was derived from a series of analytical results. The analysis indicates that the probability of minor damage exceeds 50 % for earthquakes of about 0.32 g and above, while the probability of moderate damage exceeds 50 % for earthquakes of 0.39 g and above for subsea railway tunnels passing through various ground conditions.
Seismoacoustic wave generation for two consecutive surface chemical explosions of the same yield (approximately 1 ton TNT-equivalent) was studied during the Large Surface Explosion Coupling Experiment (LSECE) conducted at Yucca Flat on the Nevada National Security Site (NNSS) site in alluvium geology. We have performed numerical simulations for both chemical explosions to investigate how the non-central source initiation, site topography and soil mechanical properties affect the evolution of the explosion (fireball and cloud), its crater, and variations in the generated blast waves. The results can be used to improve the understanding of surface explosions and their effects and how those effects can be used to infer source information such as explosive yield and emplacement. We find that the non-central detonation of the explosive cube results in non-axisymmetric blast overpressures which persist through the strong and weak shock regimes, in this case out to 200 m and more. The pattern of the secondary shock (i.e., shock created due to slowing explosive products within the expanding fireball) is also affected and its arrival relative to the main shock and may be indicative of explosive type due to its dependence on the explosive products ratio of heats. Small reflections are visible within the overpressure signal that are most probably due to small artifacts in blast path. Importantly, the fireball growth, cavity generation, and cloud formation also depart from spherical and ideal approximations due to ground interactions and material dependence, which shows the importance of realistic geomaterial models for accurate prediction. The asymmetry in peak overpressure is diminished for the second chemical explosion, which was placed in the crater of the first. Numerical modeling shows that the explosive jetting created by the non-central detonation is reduced upon interaction with the crater walls and this has the effect of making the blast generation more axisymmetric.
A novel slope stabilization technique was recently developed incorporating screw piles with vegetated flapped soilbags. These screw piles are subjected to lateral stress from soil slope and their deformation can be difficult to quantify, given the fluctuating pore-water pressure and heterogeneous soil conditions. This study proposes the use of in-situ spectral analysis of surface waves (SASW) test to estimate the small-strain soil stiffness which can then be factored to calculate the lateral deformation of the pile in finite element modelling based on prescribed pore-water pressure change. A case of bioengineered slope in Kanchanaburi province, Western Thailand was studied, involving field monitoring of pile head tilt, pore-water pressure, suction, and soil moisture over one year. The findings revealed pile head tilt of up to 0.2 degrees in response to rainfall and rise in pore-water pressure and soil moisture over one year period. A series of finite element modelling were performed using factored shear moduli from in-situ SASW test and the monitored pore-water pressure variation to reproduce the amount of pile head tilting as observed in the field during one year. It was revealed that by assuming operational shear modulus ranging between 0.0075 and 0.01 times small-strain soil stiffness, a satisfactory agreement was obtained between field measurement and analysis of pile movement. This findings provides a basis for further studies on performance of bioengineered slope utilizing screw piles. (c) 2025 Japanese Geotechnical Society. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
Deep cement mixing (DCM) is a popular in situ soil stabilization method, while the investigation on long-term coupled consolidation and contaminant leaching behavior of cement-stabilized contaminated soil is limited. In this study, axisymmetric physical model tests were conducted to investigate the coupled behaviors of a composite ground, which consisted of a central column made of cement-stabilized arsenic-contaminated marine deposits and surrounding untreated marine deposits. The test results revealed the settlement development of composite ground and the mechanism of load transfer between the DCM column and surrounding soils with increasing loading. The presence of arsenic decreased the strength and stiffness of the DCM column through the reaction between arsenic and hydration and pozzolanic reaction products. With the increase of the water/cement ratio in the DCM column, the concentration level of arsenic in the draining-out water of the composite ground increased significantly, while that in the surrounding soil showed no obvious change, indicating that arsenic mainly migrated directly through the DCM column. A theoretical axisymmetric consolidation model coupling solute transport for composite ground was established and subsequently applied to analyze the test data. The numerical model accurately depicted the pore water pressure, settlement, and spatiotemporal distribution of arsenic concentration in the physical model.
A numerical model that accounts for fully coupled long-term large strain consolidation and heat transfer provides a more realistic analysis for various applications, including geothermal energy storage and extraction, buried power cables, waste disposal, groundwater tracers, and landfills. Despite its importance, existing models rarely simulate fully coupled large-strain long-term consolidation and heat transfer effectively. To address this research gap, this study presents a numerical model, called Consolidation and Heat Transfer (i.e., CHT), designed for one-dimensional (1D) coupled large-strain consolidation and heat transfer in layered soils, with the added capability to account for thermal creep. The model employs a piecewise-linear approach for the coupled long-term finite strain consolidation and heat transfer processes. The consolidation algorithm extends the functionality of the CS-EVP code by incorporating thermally induced strains. The heat transfer algorithm accounts for conduction, thermomechanical dispersion, and advection, assuming local thermal equilibrium between fluid and solid phases. Heat transfer is consistent with the spatial and temporal variation of void ratio and seepage velocity in the long-term consolidating layer. This paper details the development of the CHT model, presents verification checks against existing numerical solutions, and demonstrates its performance through several simulations. These simulations illustrate the effects of seepage velocity, thermal boundary conditions, and layered soil configurations on the coupled heat transfer and consolidation behavior of saturated compressible soils.
The reduction in the stability of rock slopes due to rainfall is a significant issue in tropical regions. Unsaturated soil, commonly found on hill slopes, provides higher shear strength compared to saturated soil due to matric suction. Soil moisture plays a crucial role in determining slope stability during rainfall events, yet it is often overlooked in geotechnical engineering projects. This study integrates both steady-state and transient analyses to examine how rainfall intensity affects the stability of a rock slope near a tunnel portal. Transient seepage analysis was conducted using SEEP/W to simulate changes in pore water pressure (PWP) resulting from rainfall infiltration under historical and future precipitation conditions. The analysis considers medium (SSP245) and worst-case (SSP585) climate change scenarios as per Coupled Model Intercomparison Project Phase 6 (CMIP6). The findings underscore the significant impact of rainfall-induced infiltration on slope stability and highlight the importance of incorporating soil moisture dynamics in slope stability assessments. The safety factor, initially 1.54 before accounting for rainfall effects, decreases to 1.34 when the effects of rainfall are included.
The coal mining under the goaf of close-up room mining coal pillars is prone to chain instability and damage of the overlying coal pillars, aquifer damage, surface subsidence, soil erosion, vegetation withering, and other problems. In this paper, theoretical analysis was conducted on the stability of the remaining coal pillars in room mining, and numerical simulations were used to study the influence characteristics of the plastic zone, strain energy, and stress field of the overlying coal pillars during the mining of the lower close coal seam. The stability of the coal pillars under the influence of mining was analyzed with the safety factor. The proposed technologies of cemented paste backfilling on the ground and backfilling the goaf of the lower coal seam are applied, the influence of different water-cement ratios, aeolian sand, and cement content on the mechanical properties of backfilling materials was studied through experiments, and the stability of overlying coal pillars with different dimensions of the backfilling pier columns under certain ratio conditions was studied using numerical simulation method. The research results indicate that when the dimensions of the backfilling pier columns are 40 m x 40 m and the compressive strength is 3.12 MPa, the stability of the overlying coal pillar can be effectively controlled, achieving safe mining under the remaining coal pillar. The research results can provide new ideas for the mining of coal resources and environmental protection under the remaining coal pillar of room mining.
The pipe jacking method has been increasingly applied to a variety of tunnel projects. Investigating the ground disturbance characteristics during pipe jacking is of great significance to ensure accurate safety assessment and timely ground deformation control. This paper developed a three-dimensional model to simulate the entire pipe jacking process of a shallow-buried cross passage tunnel in soft strata. A key contribution of this research is the development of an element shear failure approach, combining element failure method with shear failure modeling. Meanwhile, the dynamic cutter excavation effect and the soil shear failure were considered in the numerical modeling. Through the comparison with the field monitoring results and traditional numerical simulation approach, the effectiveness, reliability, and superiority of the proposed approach were well demonstrated. Moreover, based on the numerical results, the ground deformation characteristics along with the stress-strain state of the cutter head during the soil excavating process were thoroughly analyzed. The proposed approach and its application in the ground disturbance analysis will offer useful references and guidance for numerical studies in similar pipe jacking projects in near future.