共检索到 7

Global warming has led to permafrost degradation worldwide. The Qinghai-Tibet Plateau (QTP) hosts most of the world's alpine permafrost, yet its impending changes remain largely unclear, thereby affecting regional hydrological and ecological processes and the global carbon budget. By employing a land surface model adapted to simulate frozen ground, and using state-of-the-art multi-model and multi-scenario data from the Coupled Model Intercomparison Project Phase 6, changes in permafrost distribution and its thermal regimes on the QTP are systematically predicted under various shared socioeconomic pathways (SSPs). Projections for SSP2-4.5, SSP3-7.0, and SSP5-8.5 show that most of the continuous permafrost region of the QTP will persist through 2050. Much of the permafrost is likely to degrade in the late 21st century, with projected area losses of 44 +/- 4%, 59 +/- 5%, and 71 +/- 7%, respectively, by 2100. In particular, the Three Rivers Source region in the central eastern part of the QTP is a key area of permafrost degradation, where permafrost is most vulnerable and degradation occurs earliest. The mean annual ground temperature of QTP permafrost will increase by 0.8 +/- 0.2 degrees C, 2.0 +/- 0.3 degrees C, and 2.6 +/- 0.3 degrees C under SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively, and the active layer thickness will increase by 0.7 +/- 0.1 m, 1.5 +/- 0.3 m, and 3.0 +/- 1.0 m, respectively. The surviving permafrost under SSP3-7.0 and SSP5-8.5 will be thermally unstable, which is a clear warning sign of complete disappearance. The analysis of permafrost sensitivity to climate change signifies that alpine permafrost on the QTP has low resilience to climate change, in contrast to permafrost in pan-Artic high latitudes.

2022-06-01 Web of Science

Thermal conduction control is important for retarding permafrost degradation and mitigating of frost geohazards. Similar to a thermodiode, high thermal conductivity contrast (HTCC) materials can serve as good thermal insulators. A preferred HTCC material for ground cooling is larger in thermal resistance in summer and smaller in winter. Because of contrasting thermal conductivity under frozen and thawed states, organic soil is blessed with such a property. This study quantified and reported the HTCC effects on a range of soil organic matter concentrations (SOMC) and soil moisture saturation degree (SMSD). Using the COMSOL, influences of different SOMC and SMSD on ground temperatures were simulated and compared with laboratory-measured properties. Simulation results demonstrated that with constant SMSD at 20% throughout the year, the thermal insulation effect was strengthened with increasing SOMC. A better insulating effect was judged by lower annual amplitudes and smaller depths of zero annual amplitude of ground temperatures. In case of low SMSD in summer (20%) and high SMSD in winter (60-80%), the HTCC effect of soil is enhanced with increasing SOMC. This enhancement was evidenced by increased thermal offsets and decreased maximum summer and average nearsurface soil temperatures. With constant SOMC and increasing SMSD, the rising HTCC effect gradually cools the ground. An integral analysis indicates that the higher the SOMC and SMSD in winter, the larger the thermal offset and the lower the ground temperature, i.e., the greater the HTCC effect of organic soil. This study may provide geocryological bases for engineering and environmental applications in cold regions.

2022-04-01 Web of Science

With increasing global warming, the skiing season is shortened to different degrees all over the world. As a crucial way to ensure the sustainable development of the ski industry, snow storage has been gradually studied and applied in Europe. Covering thermal insulation materials is a key engineering measure for the success of snow storage. This study used numerical methods rather than an experimental method to evaluate the thermal insulation performance of nine snow storage coverage schemes in Harbin, Beijing, and Altay, China. We investigated the thermal insulation performance of nine snow storage coverage schemes (three natural materials and six artificial ones) using a solar radiation method and an implicit finite difference method. Sensitivity analyses were conducted, and the cost performance of schemes 5-9 were analyzed. Based on the cost and thermal insulation performance, we used schemes 4 (geotextile, straw bale), 5 (geotextile, extruded polystyrene foam), and 7 (geotextile, polyurethane foam) to evaluate the snow storage effects in Harbin, Beijing, and Altay. Results showed that among schemes 1-9, scheme 7 has the best thermal insulation performance. If natural materials are used, then scheme 3 gives the best thermal insulation performance. Among schemes 5-9, scheme 5 is the most economical. The heat transfer in Beijing is higher than that in Harbin and Altay, while the latter two show similar heat transfers. The combination of meteorological conditions and coverage schemes influence the melting rate of snowpacks. The melting rate of snowpacks can be reduced with an optimized coverage scheme. The proposed methods can serve the selection of coverage schemes for snow storage.

2021-12

As a result of global warming induced permafrost degradation in recent decades, thermokarst lakes in the Qinghai-Tibet plateau (QTP) have been regulating local hydrological and ecological processes. Simulations with coupled moisture-heat numerical models in the Beiluhe basin (located in the hinterland of permafrost regions on the QTP) have provided insights into the interaction between groundwater flow and the freeze-thaw process. A total of 30 modified SUTRA scenarios were established to examine the effects of hydrodynamic forces, permeability, and climate on thermokarst lakes. The results indicate that the hydrodynamic condition variables regulate the permafrost degradation around the lakes. In case groundwater recharges to the lake, a low-temperature groundwater flow stimulates the expansion of the surrounding thawing regions through thermal convection. The thawing rate of the permafrost underlying the lake intensifies when groundwater is discharged from the lake. Under different permeability conditions, spatiotemporal variations in the active layer thickness significantly influence the occurrence of an open talik at the lake bottom. A warmer and wetter climate will inevitably lead to a sharp decrease in the upper limit of the surrounding permafrost, with a continual decrease in the duration of open talik events. Overall, our results underscore that comprehensive consideration of the relevant hydrologic processes is critical for improving the understanding of environmental and ecological changes in cold environments.

2021-12-01 Web of Science

A growing body of simulation research has considered the dynamics of permafrost, which has an important role in the climate system of a warming world. Previous studies have concentrated on the future degradation of permafrost based on global climate models (GCMs) or data from GCMs. An accurate estimation of historical changes in permafrost is required to understand the relations between changes in permafrost and the Earth's climate and to validate the results from GCMs. Using the Community Land Model 4.5 driven by the Climate Research Unit -National Centers for Environmental Prediction (CRUNCEP) atmospheric data set and observations of changes in soil temperature and active layer thickness and present-day areal extent of permafrost, this study investigated the changes in permafrost in the Northern Hemisphere from 1901 to 2010. The results showed that the model can reproduce the interannual variations in the observed soil temperature and active layer thickness. The simulated area of present-day permafrost fits well with observations, with a bias of 2.02x10(6)km(2). The area of permafrost decreased by 0.06 (0.62)x10(6)km(2)decade(-1) from 1901 to 2009 (1979 to 2009). A clear decrease in the area of permafrost was found in response to increases in air temperatures during the period from about the 1930s to the 1940s, indicating that permafrost is sensitive to even a temporary increase in temperature. From a regional perspective, high-elevation permafrost decreases at a faster rate than high-latitude permafrost; permafrost in China shows the fastest rate of decrease, followed by Alaska, Russia, and Canada. Discrepancies in the rate of decrease in the extent of permafrost among different regions were mostly linked to the sensitivity of permafrost in the regions to increases in air temperatures rather than to the amplitude of the increase in air temperatures. An increase in the active layer thickness of 0.009 (0.071)mdecade(-1) was shown during the period of 1901-2009 (1979-2009). These results are useful in understanding the response of permafrost to a historical warming climate and for validating the results from GCMs.

2017-11-27 Web of Science

The International Centre for Theoretical Physics (ICTP, Italy) Regional Climate Model version 3.0 (RegCM3) is used to simulate spatio-temporal distribution characteristics and radiative forcing (RF) of organic carbon (OC) aerosols in and around China. The preliminary simulation results show that OC aerosols are mostly concentrated in the area to the south of Yellow River and east of Tibetan Plateau. There is a decreasing trend of column burden of OC aerosols from south to north in China. The maximum value of column burden of OC aerosols is above 3 mg/m(2) and located in the central and southern China, southeastern Tibet, and southwestern China's Yunnan, Guizhou, Sichuan provinces. The simulation on the seasonal variation shows that the maximum value of column burden of OC aerosols appears in winter and the secondary value is in spring and the minimum in summer. The RF of OC aerosols which varies seasonally is negative at the top of the atmosphere (TOA) and surface. The spatio-temporal characteristics of the RF of OC aerosols are basically consistent with that of IPCC, implying the high accuracy of the parameterization scheme for OC aerosols in RegCM3.

2012-09-01 Web of Science

Carbonaceous aerosol is one of the main ingredients of the atmospheric aerosol, which includes black carbon and organic carbon. The numerical simulations from 1960 to 2000 are aimed at the direct radiative effects on climate induced by carbonaceous aerosol in East Asia using NCAR Community Atmospheric Model version 3.1 (CAM). The mean radiative forcing(RF) under all sky in Chinese mainland at TOA and surface are 0.38 and -5.31W/m(2) respectively. This distinct RF leads to -0.1K surface temperature decrease in Chinese mainland, which includes -0.26K drop of daily maximum and 0.07K rise of minimum temperature. Air column temperature has also been increased 0.11K in Chinese mainland. Significant vapor and precipitation increase can be resulted from RF of carbonaceous aerosol in north China and the Yellow and Huai River basin, accompanied by the decrease in northeast China, far-east region, and Tibet Plateau. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Conference ESIAT2011 Organization Committee.

2011-01-01 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页